Probing Attacks on Multi-Agent Systems Using Electronic Institutions

  • Shahriar Bijani
  • David Robertson
  • David Aspinall
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7169)


In open multi-agent systems, electronic institutions are used to form the interaction environment by defining social norms for group behaviour. However, as this paper shows, electronic institutions can be turned against agents to breach their security in a variety of ways. We focus our attention on probing attacks using electronic institutions specified in the Lightweight Coordination Calculus (LCC) language. LCC is a choreography language used to define electronic institutions in agent systems. A probing attack is an attack against the confidentiality of information systems. In this paper, we redefine the probing attack in conventional network security to be applicable in a multi-agent system domain, governed by electronic institutions. We introduce different probing attacks against LCC interaction models and suggest a secrecy analysis framework for these interactions. The proposed framework could be used to detect the possibility of certain probing attacks and to identify some forms of malicious electronic institutions.


Multi-Agent Systems Electronic Institutions Interaction Models Security Probing Attack Information Leakage Lightweight Coordination Calculus (LCC) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Artikis, A., Sergot, M., Pitt, J.: Specifying Norm-Governed Computational Societies. ACM Transactions on Computational Logic 10(1), 1–42 (2009)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Esteva, M., De La Cruz, D., Rosell, B., et al.: Engineering open multi-agent systems as electronic institutions. In: Procedings of the National Conference on Artificial Intelligence (AAA 2004), pp. 1010–1011. AAAI Press (2004)Google Scholar
  3. 3.
    Joseph, S., de Pinninck, A.P., Robertson, D., et al.: OpenKnowledge Deliverable 1.1: Interaction Model Language Definition (2006)Google Scholar
  4. 4.
    Robertson, D.: Multi-agent Coordination as Distributed Logic Programming. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 416–430. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Robertson, D.: A Lightweight Coordination Calculus for Agent Systems. In: Leite, J., Omicini, A., Torroni, P., Yolum, p. (eds.) DALT 2004. LNCS (LNAI), vol. 3476, pp. 183–197. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Van’t Noordende, G.J., Overeinder, B.J., Timmer, R.J., et al.: Constructing secure mobile agent systems using the agent operating system. International Journal of Intelligent Information and Database Systems 3(4), 363–381 (2009)CrossRefGoogle Scholar
  7. 7.
    Endsuleit, R., Wagner, A.: Possible attacks on and countermeasures for secure multi-agent computation. In: Arabnia, H.R., Aissi, S., Mun, Y. (eds.) SAM 2004, pp. 221–227. CSREA Press (2004)Google Scholar
  8. 8.
    Venkatesan, S., Chellappan, C.: Protection of Mobile Agent Platform through Attack Identification Scanner (AIS) by Malicious Identification Police (MIP). In: First International Conference on Emerging Trends in Engineering and Technology, pp. 1228–1231. IEEE (2008)Google Scholar
  9. 9.
    Bijani, S., Robertson, D.: A Review of Attacks and Security Approaches in Open Multi-agent Systems. Artificial Intelligence Review (2012)Google Scholar
  10. 10.
    Xiao, L., Lewis, P., Dasmahapatra, S.: Secure Interaction Models for the HealthAgents System. In: Harrison, M.D., Sujan, M.-A. (eds.) SAFECOMP 2008. LNCS, vol. 5219, pp. 167–180. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Xiao, L., Dasmahapatra, S., Lewis, P., et al.: The design and implementation of a novel security model for HealthAgents. Knowledge Engineering Review 26(2) (2011)Google Scholar
  12. 12.
    Hu, B., Dasmahapatra, S., Lewis, P., et al.: Facilitating Knowledge Management in Pervasive Health Care Systems. Networked Knowledge-Networked Media 221, 285–304 (2009)CrossRefGoogle Scholar
  13. 13.
    Becker, M.Y.: Information Flow in Credential Systems. In: 23rd IEEE Computer Security Foundations Symposium (CSF), pp. 171–185. IEEE (2010)Google Scholar
  14. 14.
    Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes.1. Information and Computation 100(1), 1–40 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Anderson, R., Kuhn, M.: Tamper Resistance: A Cautionary Note. In: Proceedings of the Second USENIX Workshop on Electronic Commerce, vol. 2, pp. 1–11. USENIX Association (1996)Google Scholar
  16. 16.
    Zheng, J., Hu, M.-Z.: Intrusion Detection of DoS/DDoS and Probing Attacks for Web Services. In: Fan, W., Wu, Z., Yang, J. (eds.) WAIM 2005. LNCS, vol. 3739, pp. 333–344. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Ishai, Y., Sahai, A., Wagner, D.: Private Circuits: Securing Hardware against Probing Attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Schmidt, J.-M., Kim, C.: A Probing Attack on AES. In: Chung, K.-I., Sohn, K., Yung, M. (eds.) WISA 2008. LNCS, vol. 5379, pp. 256–265. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Xu, S., Ni, Q., Bertino, E., et al.: A characterization of the problem of secure provenance management. In: IEEE International Conference on Intelligence and Security Informatics, ISI 2009, pp. 310–314. IEEE (2009)Google Scholar
  20. 20.
    Braun, U., Shinnar, A., Seltzer, M.: Securing provenance. In: Proceedings of the 3rd Conference on Hot Topics in Security, pp. 1–5. USENIX Association (2008)Google Scholar
  21. 21.
    Abian, J., Atencia, M., Besana, P., et al.: OpenKnowledge Deliverable 6.3: Bioinformatics Interaction Models (2008)Google Scholar
  22. 22.
    Siebes, R., Dupplaw, D., Kotoulas, S., et al.: The openknowledge system: an interaction-centered approach to knowledge sharing. In: Proceedings of the 15th International Conference on Cooperative Information Systems (CoopIS), pp. 381–390 (2007)Google Scholar
  23. 23.
    Gurevich, Y., Neeman, I.: DKAL: Distributed-knowledge authorization language. In: IEEE 21st Computer Security Foundations Symposium, CSF 2008, pp. 149–162. IEEE (2008)Google Scholar
  24. 24.
    Robertson, D., Barker, A., Besana, P., et al.: Models of interaction as a grounding for peer to peer knowledge sharing. In: Advances in Web Semantics I, pp. 81–129 (2009)Google Scholar
  25. 25.
    Bryans, J.W., Koutny, M., Mazare, L., et al.: Opacity generalised to transition systems. International Journal of Information Security 7(6), 421–435 (2008)CrossRefGoogle Scholar
  26. 26.
    Kakas, A.C., Kowalski, R.A., Toni, F.: The Role of Abduction in Logic Programming. In: Gabbay, D.M., Hogger, C.J., Robinson, J.A. (eds.) Handbook of Logic in Artificial Intelligence and Logic Programming: Logic Programming 5, pp. 235–324. Oxford University Press, USA (1998)Google Scholar
  27. 27.
    Gorrieri, R., Martinelli, F., Matteucci, I.: Towards information flow properties for distributed systems. Electronic Notes in Theoretical Computer Science 236, 65–84 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Shahriar Bijani
    • 1
    • 2
  • David Robertson
    • 1
  • David Aspinall
    • 1
  1. 1.Informatics SchoolUniversity of EdinburghEdinburghUK
  2. 2.Computer Science Dept.Shahed UniversityTehranIran

Personalised recommendations