Skip to main content

Generation, Transmission, and Physiological Effects of Electrical Signals in Plants

  • Chapter
  • First Online:
Plant Electrophysiology

Abstract

This review explores the relationship between electrical long-distance signaling and the potential consequences for physiological processes in plants. Electrical signals such as action potentials (APs) and variation potentials (VPs) can be generated by spontaneous changes in temperature, light, touch, soil water content, by electrical as well as chemical stimulation or by wounding. An AP is evoked when the stimulus is sufficiently great to depolarize the membrane to below a certain threshold, while VPs are mostly induced by wounding, which induces a hydraulic wave transmitted through the xylem, thereby causing a local electrical response in the neighboring symplastic cells. Once generated, the signal can be transmitted over short distances from cell-to-cell through plasmodesmata, and after having reached the phloem it can also be propagated over long distances along the sieve tube plasma membrane. Such electrical messages may have a large impact on distant cells, as numerous well-documented physiological effects of long-distance electrical signaling have been shown. Electrical signals, for instance, affect phloem transport as well as photosynthesis, respiration, nutrient uptake, and gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ache P, Becker D, Ivashikina N, Dietrich P, Roelfsema MRG, Hedrich R (2000) GORK, a delayed outward rectifier expressed in guard cells of Arabidopsis thaliana, is a K+ selective, K+ sensing ion channel. FEBS Lett 486:93–98

    PubMed  CAS  Google Scholar 

  • Ache P, Becker D, Deeken R, Dreyer I, Weber H, Fromm J, Hedrich R (2001) VFK1, a Vicia faba K+ channel involved in phloem unloading. Plant J 27:571–580

    PubMed  CAS  Google Scholar 

  • Ache P, Fromm J, Hedrich R (2010) Potassium-dependent wood formation in poplar: seasonal aspects and environmental limitations. Plant Biol 12:259–267

    PubMed  CAS  Google Scholar 

  • Adrian ED, Bronk DW (1928) The discharge of impulses in motor nerve fibres. I. Impulses in single fibres of the phrenic nerve. J Physiol 66:81–101

    PubMed  CAS  Google Scholar 

  • Arend M, Weisenseel MH, Brummer M, Osswald W, Fromm J (2002) Seasonal changes of plasma membrane H+-ATPase and endogenous ion current during growth in poplar plants. Plant Physiol 129:1651–1663

    PubMed  CAS  Google Scholar 

  • Arend M, Monshausen G, Wind C, Weisenseel MH, Fromm J (2004) Effect of potassium deficiency on the plasma membrane H+-ATPase of the wood ray parenchyma in poplar. Plant Cell Environ 27:1288–1296

    CAS  Google Scholar 

  • Arend M, Stinzing A, Wind C, Langer K, Latz A, Ache P, Fromm J, Hedrich R (2005) Polar-localised poplar K+ channel capable of controlling electrical properties of wood-forming cells. Planta 223:140–148

    PubMed  CAS  Google Scholar 

  • Beilby MJ, Coster HGL (1979) The action potential in Chara corallina. II. Two activation-inactivation transients in voltage clamps of plasmalemma. Austr J Plant Phys 6:329–335

    Google Scholar 

  • Beyhl D, Hörtensteiner S, Martinoia E, Farmer EE, Fromm J, Marten I, Hedrich R (2009) The fou2 mutation in the major vacuolar cation channel TPC1 confers tolerance to inhibitory luminal calcium. Plant J 58:715–723

    PubMed  CAS  Google Scholar 

  • Bulychev AA, Kamzolkina NA (2006) Effect of action potential on photosynthesis and spatially distributed H+ fluxes in cells and chloroplasts of Chara corallina. Russ J Plant Physiol 53:5–14

    Google Scholar 

  • Canny MJP (1975) Mass transfer. In: Zimmermann HM, Milburn JA (eds) Encyclopedia of plant physiology. Springer, Berlin, pp 139–153

    Google Scholar 

  • Carpaneto A, Geiger D, Bamberg E, Sauer N, Fromm J, Hedrich R (2005) Phloem-localized, proton-coupled sucrose carrier ZmSUT1 mediates sucrose efflux under control of sucrose gradient and pmf. J Biol Chem 280:21437–21443

    PubMed  CAS  Google Scholar 

  • Carpaneto A, Ivashikina N, Levchenko V, Krol E, Zhu J-K, Hedrich R (2007) Cold transiently activates calcium-permeable channels in Arabidopsis mesophyll cells. Plant Physiol 143:487–494

    PubMed  CAS  Google Scholar 

  • Cosgrove DJ, Hedrich R (1991) Stretch-activated chloride, potassium, and calcium channels coexisting in plasma membranes of guard cells of Vicia faba L. Planta 186:143–153

    PubMed  CAS  Google Scholar 

  • Davies E (1987) Action potentials as multifunctional signals in plants: a unifying hypothesis to explain apparently disparate wound responses. Plant Cell Environ 10:623–631

    Google Scholar 

  • Davies E (1993) Intercellular and intracellular signals in plants and their transduction via the membrane—cytoskeleton interface. Semin Cell Biol 4:139–147

    PubMed  CAS  Google Scholar 

  • Davies E (2004) New functions for electrical signals in plants. New Phytol 161:607–610

    Google Scholar 

  • Davies E, Ramaiah KVA, Abe S (1986) Wounding inhibits protein synthesis yet stimulates polysome formation in aged, excised pea epicotyls. Plant Cell Physiol 27:1377–1386

    CAS  Google Scholar 

  • Davies E, Stankovic B (2006) Electrical signals, the cytoskeleton, and gene expression: a hypothesis on the coherence of cellular processes to environmental insult. In: Baluska F, Mancuso S, Volkmann D (eds) Communication in plants—neuronal aspects of plant life. Springer, Berlin, pp 309–320

    Google Scholar 

  • Davies WJ, Zhang J (1991) Root signals and the regulation of growth and development of plants in drying soil. Annu Rev Plant Physiol Plant Mol Biol 42:55–76

    CAS  Google Scholar 

  • Deeken R, Geiger D, Fromm J, Koroleva O, Ache P, Langenfeld-Heyser R, Sauer N, May ST, Hedrich R (2002) Loss of the AKT2/3 potassium channel affects sugar loading into the phloem of Arabidopsis. Planta 216:334–344

    PubMed  CAS  Google Scholar 

  • Demidchik V, Maathuis FJM (2007) Physiological roles of non-selective cation channels in plants: from salt stress to signalling and development. New Phytol 175:387–404

    PubMed  CAS  Google Scholar 

  • Ding JP, Pickard BG (1993) Modulation of mechanosensitive calcium-selective cation channels by temperature. Plant J 3:713–720

    PubMed  CAS  Google Scholar 

  • Dutta R, Robinson KR (2004) Identification and characterization of stretch-activated ion channels in pollen protoplasts. Plant Physiol 135:1398–1406

    PubMed  CAS  Google Scholar 

  • Dziubinska H, Trebacz K, Zawadzki T (1989) The effect of excitation on the rate of respiration in the liverwort Conocephalum conicum. Physiol Plant 75:417–423

    Google Scholar 

  • Eschrich W, Fromm J, Evert RF (1988) Transmission of electric signals in sieve tubes of zucchini plants. Bot Acta 101:327–331

    Google Scholar 

  • Evert RF, Eschrich W, Eichhorn SE (1973) P-protein distribution in mature sieve elements of Cucurbita maxima. Planta 109:193–210

    CAS  Google Scholar 

  • Evert R (1990) Dicotyledons. In: Behnke H-D, Sjolund RD (eds) Sieve elements—comparative structure, induction and development. Springer, Berlin, pp 103–137

    Google Scholar 

  • Filek M, Koscielniak J (1997) The effect of wounding the roots by high temperature on the respiration rate of the shoot and propagation of electric signal in horse bean seedlings (Vicia faba L. Minor). Plant Science 123:39–46

    CAS  Google Scholar 

  • Findlay GP (1961) Voltage-clamp experiments with Nitella. Nature 191:812–814

    Google Scholar 

  • Findlay GP (1962) Calcium ions and the action potential in Nitella. Aust J Biol Sci 15:69–82

    CAS  Google Scholar 

  • Fisahn J, Herde O, Willmitzer L, Pena-Cortes H (2004) Analysis of the transient increase in cytosolic Ca2+ during the action potential of higher plants with high temporal resolution: requirement of Ca2+ transients for induction of jasmonic acid biosynthesis and PINII gene expression. Plant Cell Physiol 45:456–459

    PubMed  CAS  Google Scholar 

  • Forterre Y, Skothelm JM, Dumals J, Mahadevan L (2005) How the venus flytrap snaps. Nature 433:421–425

    PubMed  CAS  Google Scholar 

  • Fromm J (1991) Control of phloem unloading by action potentials in Mimosa. Physiol Plant 83:529–533

    Google Scholar 

  • Fromm J (2010) Wood formation of trees in relation to potassium and calcium nutrition. Tree Physiol 30:1140–1147

    PubMed  CAS  Google Scholar 

  • Fromm J, Bauer T (1994) Action potentials in maize sieve tubes change phloem translocation. J Exp Bot 45:463–469

    Google Scholar 

  • Fromm J, Eschrich W (1988a) Transport processes in stimulated and non-stimulated leaves of Mimosa pudica. I. The movement of 14C-labelled photoassimilates. Trees 2:7–17

    Google Scholar 

  • Fromm J, Eschrich W (1988b) Transport processes in stimulated and non-stimulated leaves of Mimosa pudica. II. Energesis and transmission of seismic stimulations. Trees 2:18–24

    Google Scholar 

  • Fromm J, Eschrich W (1988c) Transport processes in stimulated and non-stimulated leaves of Mimosa pudica. III. Displacement of ions during seismonastic leaf movements. Trees 2:65–72

    Google Scholar 

  • Fromm J, Eschrich W (1989) Correlation of ionic movements with phloem unloading and loading in barley leaves. Plant Physiol Biochem 27:577–585

    CAS  Google Scholar 

  • Fromm J, Eschrich W (1990) Seismonastic movements in Mimosa. In: Satter RL, Gorton HL, Vogelmann TC (eds) The pulvinus: motor organ for leaf movement. Americ Soc Plant Physiol, Rockville, pp 25–43

    Google Scholar 

  • Fromm J, Eschrich W (1993) Electric signals released from roots of willow (Salix viminalis L.) change transpiration and photosynthesis. J Plant Physiol 141:673–680

    CAS  Google Scholar 

  • Fromm J, Fei H (1998) Electrical signaling and gas exchange in maize plants of drying soil. Plant Sci 132:203–213

    CAS  Google Scholar 

  • Fromm J, Lautner S (2005) Characteristics and functions of phloem-transmitted electrical signals in higher plants. In: Baluska F, Mancuso S, Volkmann D (eds) Communication in plants–neuronal aspects of plant life. Springer, Heidelberg, pp 321–332

    Google Scholar 

  • Fromm J, Lautner S (2007) Electrical signals and their physiological significance in plants. Plant Cell Environm 30:249–257

    CAS  Google Scholar 

  • Fromm J, Spanswick R (1993) Characteristics of action potentials in willow (Salix viminalis L.). J Exp Bot 44:1119–1125

    Google Scholar 

  • Fromm J, Hajirezaei M, Wilke I (1995) The biochemical response of electrical signaling in the reproductive system of Hibiscus plants. Plant Physiol 109:375–384

    PubMed  CAS  Google Scholar 

  • Fromm J, Meyer AJ, Weisenseel MH (1997) Growth, membrane potential and endogenous ion currents of willow (Salix viminalis) roots are all affected by abscisic acid and spermine. Physiol Plant 99:529–537

    CAS  Google Scholar 

  • Furch ACU, Hafke JB, Schulz A, van Bel AJE (2007) Ca2+-mediated remote control of reversible sieve tube occlusion in Vicia faba. J Exp Bot 58:2827–2838

    PubMed  CAS  Google Scholar 

  • Furch ACU, van Bel AJE, Fricker MD, Felle HH, Fuchs M, Hafke JB (2009) Sieve element Ca2+ channels as relay stations between remote stimulus and sieve tube occlusion. Plant Cell 21:2118–2131

    PubMed  CAS  Google Scholar 

  • Furch ACU, Zimmermann MR, Will T, Hafke JB, van Bel AJE (2010) Remote-controlled stop of mass flow by biphasic occlusion in Cucurbita maxima. J Exp Bot 61:3697–3708

    PubMed  CAS  Google Scholar 

  • Gaffey CT, Mullins LJ (1958) Ion fluxes during the action potential in Chara. J Physiol 144:505–524

    PubMed  CAS  Google Scholar 

  • Gamalei YV, Fromm J, Krabel D, Eschrich W (1994) Chloroplast movement as response to wounding in Elodea canadensis. J Plant Physiol 144:518–524

    CAS  Google Scholar 

  • Gaymard F, Pilot G, Lacombe B, Bouchez D, Bruneau D, Boucherez J, Michaux-Ferriere N, Thibaud JB, Sentenac H (1998) Identification and disruption of a plant shaker-like outward channel involved in K+ release into the xylem sap. Cell 94:647–655

    PubMed  CAS  Google Scholar 

  • Grams TEE, Koziolek C, Lautner S, Matyssek R, Fromm J (2007) Distinct roles of electric and hydraulic signals on the reaction of leaf gas exchange upon re-irrigation in Zea mays L. Plant Cell Environ 30:79–84

    PubMed  Google Scholar 

  • Grams TEE, Lautner S, Felle HH, Matyssek R, Fromm J (2009) Heat-induced electrical signals affect cytoplasmic and apoplastic pH as well as photosynthesis during propagation through the maize leaf. Plant Cell Environ 32:319–326

    PubMed  CAS  Google Scholar 

  • Gurovich LA, Hermosilla P (2009) Electric signalling in fruit trees in response to water applications and light-darkness conditions. J Plant Physiol 166:290–300

    PubMed  CAS  Google Scholar 

  • Gustin MC, Zhou XL, Martinac B, Kung C (1988) A mechanosensitive ion channel in the yeast plasma membrane. Science 242:762–765

    PubMed  CAS  Google Scholar 

  • Hamilton DWA, Hills A, Kohler B, Blatt MR (2000) Ca2+ channels at the plasma membrane of stomatal guard cells are activated by hyperpolarization and abscisic acid. Proc Natl Acad Sci USA 97:4867–4972

    Google Scholar 

  • Hayama T, Shimmen T, Tazawa M (1979) Participation of Ca2+ in cessation of cytoplasmic streaming induced by membrane excitation in Characeae internodal cells. Protoplasma 99:305–321

    Google Scholar 

  • Hörmann G (1898) Studien über die Protoplasmaströmung bei den Characaean. Gustav Fischer Verlag, Jena

    Google Scholar 

  • Hodick D, Sievers A (1988) The action potential of Dionaea muscipula Ellis. Planta 174:8–18

    CAS  Google Scholar 

  • Hope AB (1961) Ionic relations of cells of Chara corallina. V. The action potential. Aust J Biol Sci 14:312–322

    CAS  Google Scholar 

  • Kayler Z, Gessler A, Buchmann N (2010) What is the speed of link between aboveground and belowground processes? New Phytol 187:885–888

    PubMed  Google Scholar 

  • Kempers R, Ammerlaan A, van Bel AJE (1998) Symplasmic constriction and ultrastructural features of the sieve element/companion cell complex in the transport phloem of apoplasmically and symplasmically phloem-loading species. Plant Physiol 116:271–278

    CAS  Google Scholar 

  • Kiegle E, Gilliham M, Haseloff J, Tester M (2000) Hyperpolarisation activated calcium currents found only in cells from the elongation zone of Arabidopsis thaliana roots. Plant J 21:225–229

    PubMed  CAS  Google Scholar 

  • Kishimoto U (1968) Response of Chara internodes to mechanical stimulation. Ann Rep Biol Works Fac Sci Osaka Univ 16:61–66

    Google Scholar 

  • Knoblauch M, Peters WS, Ehlers K, van Bel AJE (2001) Reversible calcium-regulated stopcocks in legume sieve tubes. Plant Cell 13:1221–1230

    PubMed  CAS  Google Scholar 

  • Koziolek C, Grams TEE, Schreiber U, Matyssek R, Fromm J (2004) Transient knockout of photosynthesis mediated by electrical signals. New Phytol 161:715–722

    CAS  Google Scholar 

  • Langer K, Ache P, Geiger D, Stinzing A, Arend M, Wind C, Regan S, Fromm J, Hedrich R (2002) Poplar potassium transporters capable of controlling K+ homeostasis and K+ dependent xylogenesis. Plant J 32:997–1009

    PubMed  CAS  Google Scholar 

  • Lautner S, Grams TEE, Matyssek R, Fromm J (2005) Characteristics of electrical signals in poplar and responses in photosynthesis. Plant Physiol 138: 2200–2209

    Google Scholar 

  • Lunevsky VZ, Zherelova OM, Vostrikov IY, Berestovsky GN (1983) Excitation of Characeae cell membranes as a result of activation of calcium and chloride channels. J Membr Biol 72:43–58

    Google Scholar 

  • Mansfield TA, Hetherington AM, Atkinson CJ (1990) Some current aspects of stomatal physiology. Annu Rev Plant Physiol Plant Mol Biol 41:55–75

    CAS  Google Scholar 

  • Martinac B, Buechner M, Delcour AH, Adler J, Kung C (1987) Pressure-sensitive ion channel in Escherichia coli. Proc Natl Acad Sci USA 84:2297–2301

    PubMed  CAS  Google Scholar 

  • McCormack E, Velasquez L, Delk NA, Braam J (2006) Touch-responsive behaviours and gene expression in plants. In: Baluska F, Mancuso S, Volkmann D (eds) Communication in plants—neuronal aspects of plant life. Springer, Berlin, pp 249–260

    Google Scholar 

  • Mencuccini M, Hölttä T (2010) The significance of phloem transport for the speed with which canopy photosynthesis and belowground respiration are linked. New Phytol 185:189–203

    PubMed  CAS  Google Scholar 

  • Minchin PEH, Thorpe MR (1983) A rate of cooling response in phloem translocation. J Exp Bot 34:529–536

    Google Scholar 

  • Mühling KH, Sattelmacher B (1997) Determination of apoplastic K+ in intact leaves by ratio imaging of PBFI fluorescence. J Exp Bot 48:1609–1614

    Google Scholar 

  • Mummert E, Gradmann D (1976) Voltage dependent potassium fluxes and the significance of action potentials in Acetabularia. Biochim Biophys Acta 443:443–450

    PubMed  CAS  Google Scholar 

  • Nick P (2008) Microtubules as sensors for abiotic stimuli. In: Nick P (ed) Plant microtubules, 2nd edn. Springer, Berlin, pp 175–203

    Google Scholar 

  • Oda K (1976) Simultaneous recording of potassium and chloride effluxes during an action potential in Chara corallina. Plant Cell Physiol 17:1085–1088

    CAS  Google Scholar 

  • Oyarce P, Gurovich L (2010) Electrical signals in avocado trees. Plant Signaling Behav 5(1):34–41

    CAS  Google Scholar 

  • Plieth C, Hansen U-P, Knight H, Knight MR (1999) Temperature sensing by plants: the primary characteristics of signal perception and calcium response. Plant J 18:491–497

    PubMed  CAS  Google Scholar 

  • Preiss J, Robinson N, Spilatro S, McNamara K (1985) Starch synthesis and its regulation. In: Heath R, Preiss J (eds) Regulation of carbon partitioning in photosynthetic tissue. Amer Soc Plant Physiol, Rockville, pp 1–26

    Google Scholar 

  • Pyatygin SS, Opritov VA, Vodeneev VA (2008) Signaling role of action potential in higher plants. Russ J Plant Physiol 55:285–291

    CAS  Google Scholar 

  • Rhodes J, Thain JF, Wildon DC (1996) The pathway for systemic electrical signal transduction in the wounded tomato plant. Planta 200:50–57

    CAS  Google Scholar 

  • Rienmüller F, Beyhl D, Lautner S, Fromm J, Al-Rasheid KAS, Ache P, Farmer EE, Marten I, Hedrich R (2010) Guard cell-specific calcium sensitivity of high density and activity SV/TPC1 channels. Plant Cell Physiol 51(9):1548–1554

    PubMed  Google Scholar 

  • Schurr U, Gollan T (1990) Composition of xylem sap of plants experiencing root water stress: a descriptive study. In: Davies WJ, Jeffcoat B (eds) Importance of root to shoot communication in the response to environmental stress. Br Soc Plant Growth Regul, Bristol, pp 201–214

    Google Scholar 

  • Shabala S, Pang J, Zhou M, Shabala L, Cuin TA, Nick P, Wegner LH (2009) Electrical signalling and cytokinins mediate effects of light and root cutting on ion uptake in intact plants. Plant Cell Environ 32:194–207

    PubMed  CAS  Google Scholar 

  • Shiina T, Tazawa M (1986) Action potential in Luffa cylindrica and its effects on elongation growth. Plant Cell Physiol 27:1081–1089

    Google Scholar 

  • Shvetsova T, Mwesigwa J, Labady A, Kelly S, Thomas D, Lewis K, Volkov AG (2002) Soybean electrophysiology: effects of acid rain. Plant Sci 162:723–731

    CAS  Google Scholar 

  • Sibaoka T (1969) Physiology of rapid movements in higher plants. Ann Rev Plant Physiol 20:165–184

    CAS  Google Scholar 

  • Sibaoka T (1973) Transmission of action potentials in Biophytum. Bot Mag 86:51–61

    Google Scholar 

  • Simons P (1992) The action plant. Movement and nervous behaviour in plants. Blackwell Publishing, Oxford

    Google Scholar 

  • Sinyukhin AM, Britikov EA (1967) Action potentials in the reproductive system of plants. Nature 215:1278–1280

    Google Scholar 

  • Spanjers AW (1981) Bioelectric potential changes in the style of Lilium longiflorum Thunb. after self- and cross-pollination of the stigma. Planta 153:1–5

    Google Scholar 

  • Spanswick RM (1972) Electrical coupling between cells of higher plants: a direct demonstration of intercellular communication. Planta 102:215–227

    CAS  Google Scholar 

  • Spanswick RM, Costerton JWF (1967) Plasmodesmata in Nitella translucens: structure and electrical resistance. J Cell Sci 2:451–464

    PubMed  CAS  Google Scholar 

  • Spyropoulos CS, Tasaki I, Hayward G (1961) Fractination of tracer effluxes during action potential. Science 133:2064–2065

    PubMed  CAS  Google Scholar 

  • Stahlberg E, Cosgrove DJ (1997) The propagation of slow wave potentials in pea epicotyls. Plant Physiol 113:33–41

    Google Scholar 

  • Stahlberg R, Cleland RE, van Volkenburgh E (2006) Slow wave potentials—a propagating electrical signal unique to higher plants. In: Baluska F, Mancuso S, Volkmann D (eds) Communication in plants—neuronal aspects of plant life. Springer, Berlin, pp 291–308

    Google Scholar 

  • Stankovic B, Davies E (1996) Both action potentials and variation potentials induce proteinase inhibitor gene expression in tomato. FEBS Lett 390:275–279

    PubMed  CAS  Google Scholar 

  • Stankovic B, Davies E (1997) Intercellular communication in plants: electrical stimulation of proteinase inhibitor gene expression in tomato. Planta 202:402–406

    CAS  Google Scholar 

  • Szmelcman S, Adler J (1976) Change in membrane potential during bacterial chemotaxis. Proc Natl Acad Sci USA 73:4387–4391

    PubMed  CAS  Google Scholar 

  • Tazawa M, Shimmen T, Mimura T (1987) Membrane control in the Characeae. Annu Rev Plant Physiol 38:95–117

    CAS  Google Scholar 

  • Thion L, Mazars C, Nacry P, Bouchez D, Moreau M, Ranjeva R, Thuleau P (1998) Plasma membrane depolarization-activated calcium channels stimulated by microtubule-depolymerizing drugs in wild-type Arabidopsis thaliana protoplasts, display constitutively large activities and a longer half-life in ton 2 mutant cells affected in the organization of the cortical microtubules. Plant J 13: 603–610

    Google Scholar 

  • Thorpe MREH, Foeller J, van Bel AJE, Hafke JB (2010) Rapid cooling triggers forisome dispersion just before phloem transport stops. Plant Cell Environ 33:259–271

    PubMed  CAS  Google Scholar 

  • Thorsch J, Esau K (1981) Nuclear generation and the association of endoplasmic reticulum with the nuclear envelope and microtubules in maturing sieve elements of Gossypium hirsutum. J Ultrastr Res 74:195–204

    CAS  Google Scholar 

  • Thuleau P, Moreau M, Schroeder JI, Ranjeva R (1994) Recruitment of plasma membrane voltage-dependent calcium-permeable channels in carrot cells. EMBO J 13:5843–5847

    PubMed  CAS  Google Scholar 

  • Van Bel AJE (1993) The transport phloem. Specifics of its functioning. Prog Bot 54:134–150

    Google Scholar 

  • Van Bel AJE, Ehlers K (2005) Electrical signalling via plasmodesmata. In: Oparka KJ (ed) Plasmodesmata, Blackwell Publishing, Oxford, pp 263–278

    Google Scholar 

  • Van Bel AJE, Van Rijen HVM (1994) Microelectrode-recorded development of symplasmic autonomy of the sieve element/companion cell complex in the stem phloem of Lupinus luteus. Planta 192:165–175

    Google Scholar 

  • Van Sambeek JW, Pickard BG (1976) Mediation of rapid electrical, metabolic, transpirational and photosynthetic changes by factors released from wounds. I. Variation potentials and putative action potentials in intact plants. Can J Bot 54:2642–2650

    Google Scholar 

  • Volk G, Franceschi VR (2000) Localization of a calcium-channel-like protein in the sieve element plasma membrane. Aust J Plant Physiol 27:779–786

    CAS  Google Scholar 

  • Volkov AG, Dunkley TC, Morgan SA, Ruff D II, Boyce YL, Labady AJ (2004) Bioelectrochemical signaling in green plants induced by photosensory systems. Bioelectrochem 63:91–94

    CAS  Google Scholar 

  • Volkov AG, Adesina T, Markin VS, Jovanov E (2008a) Kinetics and mechanism of Dionaea muscipula trap closing. Plant Physiol 146:694–702

    PubMed  CAS  Google Scholar 

  • Volkov AG, Coopwood KJ, Markin VS (2008b) Inhibition of the Dionaea muscipula Ellis trap closure by ion and water channel blockers and uncouplers. Plant Sci 175:642–649

    CAS  Google Scholar 

  • Volkov AG, Adesina T, Jovanov E (2008c) Charge induced closing of Dionaea muscipula Ellis trap. Bioelectrochemistry 74:16–21

    PubMed  CAS  Google Scholar 

  • Volkov AG, Carrell H, Baldwin A, Markin VS (2009a) Electrical memory in Venus flytrap. Bioelectrochemistry 75:142–147

    PubMed  CAS  Google Scholar 

  • Volkov AG, Carrell H, Markin VS (2009b) Biologically closed electrical circuits in Venus flytrap. Plant Physiol 149:1661–1667

    PubMed  CAS  Google Scholar 

  • Volkov AG, Foster JC, Ashby TA, Walker RK, Johnson JA, Markin VS (2010) Mimosa pudica: Electrical and mechanical stimulation of plant movements. Plant Cell Environ 33:163–173

    PubMed  Google Scholar 

  • White PJ, Ridout MS (1999) An energy-barrier model for the permeation of monovalent and divalent cations through the maxi cation channel in the plasma membrane of rye roots. J Membr Biol 168:63–75

    PubMed  CAS  Google Scholar 

  • White PJ (2004) Calcium signals in root cells: the roles of plasma membrane calcium channels. Biol Plant 59:77–83

    CAS  Google Scholar 

  • White PJ (2009) Depolarization-activated calcium channels shape the calcium signatures induced by low-temperature stress. New Phytol 183:6–8

    PubMed  CAS  Google Scholar 

  • Wildon DC, Thain JF, Minchin PEH, Gubb IR, Reilly AJ, Skipper YD, Doherty HM, Odonnell PJ, Bowles DJ (1992) Electrical signaling and systemic proteinase-inhibitor induction in the wounded plant. Nature 360:62–65

    CAS  Google Scholar 

  • Williams SE, Pickard BG (1972a) Properties of action potentials in Drosera tentacles. Planta 103:193–221

    Google Scholar 

  • Williams SE, Pickard BG (1972b) Receptor potentials and action potentials in Drosera tentacles. Planta 103:222–240

    Google Scholar 

  • Wind C, Arend M, Fromm J (2004) Potassium-dependent cambial growth in poplar. Plant Biol 6:30–37

    PubMed  CAS  Google Scholar 

  • Woodley SJ, Fensom DS, Thompson RG (1976) Biopotentials along the stem of Helianthus in association with short-term translocation of 14C and chilling. Can J Bot 54:1246–1256

    Google Scholar 

  • Wright JP, Fisher DB (1981) Measurement of the sieve tube membrane potential. Plant Physiol 67:845–848

    PubMed  CAS  Google Scholar 

  • Zawadzki T, Davies E, Dziubinska H, Trebacz K (1991) Characteristics of action potentials in Helianthus annuus. Physiol Plant 83:601–604

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Fromm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fromm, J., Lautner, S. (2012). Generation, Transmission, and Physiological Effects of Electrical Signals in Plants. In: Volkov, A. (eds) Plant Electrophysiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29110-4_8

Download citation

Publish with us

Policies and ethics