Skip to main content

Actin, Myosin VIII and ABP1 as Central Organizers of Auxin-Secreting Synapses

  • Chapter
  • First Online:
Plant Electrophysiology

Abstract

In the root apex transition zone, large portion of the polar auxin transport (PAT) is accomplished via endocytic vesicular recycling at F-actin and myosin VIII-enriched cell–cell adhesion domains which are characterized as plant synapses. In these cells, PINs act as vesicular transporters that enrich recycling vesicles and endosomes with auxin, which is then secreted out of cells in a neurotransmitter-like mode. Besides F-actin and myosin VIII, auxin receptor auxin binding protein 1 (ABP1) emerges as critical organizing molecule not only for the plant synapses but also for the whole transition zone. Synaptic auxin transport in root apices is directly linked for sensing environment, and also central for translating these perceptions, via sensory-motoric circuits, into adaptive root tropisms. Finally, PINs acting also as vesicular transportes are suggested to represent transceptors, and the synaptic activity is proposed act as flux sensor for the polar transport of auxin

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baluška F (2010) Recent surprising similarities between plant cells and neurons. Plant Signal Behav 5:87–89

    Article  PubMed  Google Scholar 

  • Baluška F, Hlavacka A (2005) Plant formins come to age: something special about cross-walls. New Phytol 168:499–503

    Article  PubMed  Google Scholar 

  • Baluška F, Mancuso S (2009) Plants and animals: convergent evolution in action? In: Baluška F (ed) Plant-environment interactions from sensory plant biology to active plant behavior. Springer Verlag, Berlin, pp 285–301

    Google Scholar 

  • Baluška F, Volkmann D (2011) Mechanical aspects of gravity-controlled growth, development and morphogenesis. In: Wojtaszek P (ed) Mechanical integration of plant cells and plants. Springer Verlag, Berlin, pp 195–222

    Chapter  Google Scholar 

  • Baluška F, Vitha S, Barlow PW, Volkmann D (1997) Rearrangements of F-actin arrays in growing cells of intact maize root apex tissues: a major developmental switch occurs in the postmitotic transition region. Eur J Cell Biol 72:113–121

    PubMed  Google Scholar 

  • Baluška F, Barlow PW, Volkmann D (2000) Actin and myosin VIII in developing root cells. In: Staiger CJ, Baluška F, Volkmann D, Barlow PW (eds) Actin–a dynamic framework for multiple plant cell functions. Kluwer Academic Publishers, Dordrecht, pp 457–476

    Google Scholar 

  • Baluška F, Cvrčková F, Kendrick-Jones J, Volkmann D (2001) Sink plasmodesmata as gateways for phloem unloading. Myosin VIII and calreticulin as molecular determinants of sink strength? Plant Physiol 126:39–46

    Article  PubMed  Google Scholar 

  • Baluška F, Hlavačka A, Šamaj J, Palme K, Robinson DG, Matoh T, McCurdy DW, Menzel D, Volkmann D (2002) F-actin-dependent endocytosis of cell wall pectins in meristematic root cells: insights from brefeldin a-induced compartments. Plant Physiol 130:422–431

    Article  PubMed  CAS  Google Scholar 

  • Baluška F, Wojtaszek P, Volkmann D, Barlow PW (2003a) The architecture of polarized cell growth: the unique status of elongating plant cells. BioEssays 25:569–576

    Article  PubMed  CAS  Google Scholar 

  • Baluška F, Šamaj J, Wojtaszek P, Volkmann D, Menzel D (2003b) Cytoskeleton–plasma membrane—cell wall continuum in plants: emerging links revisited. Plant Physiol 133:482–491

    Article  PubMed  CAS  Google Scholar 

  • Baluška F, Šamaj J, Menzel D (2003c) Polar transport of auxin: carrier-mediated flux across the plasma membrane or neurotransmitter-like secretion? Trends Cell Biol 13:282–285

    Article  PubMed  CAS  Google Scholar 

  • Baluška F, Šamaj J, Hlavačka A, Kendrick-Jones J, Volkmann D (2004) Myosin VIII and F-actin enriched plasmodesmata in maize root inner cortex cells accomplish fluid-phase endocytosis via an actomyosin-dependent process. J Exp Bot 55:463–473

    Article  PubMed  Google Scholar 

  • Baluška F, Liners F, Hlavačka A, Schlicht M, Van Cutsem P, McCurdy D, Menzel D (2005a) Cell wall pectins and xyloglucans are internalized into dividing root cells and accumulate within cell plates during cytokinesis. Protoplasma 225:141–155

    Article  PubMed  CAS  Google Scholar 

  • Baluška F, Volkmann D, Menzel D (2005b) Plant synapses: actin-based adhesion domains for cell-to-cell communication. Trends Plant Sci 10:106–111

    Article  PubMed  CAS  Google Scholar 

  • Baluška F, Schlicht M, Volkmann D, Mancuso S (2008) Vesicular secretion of auxin: evidences and implications. Plant Signal Behav 3:254–256

    Article  PubMed  Google Scholar 

  • Baluška F, Schlicht M, Wan Y-L, Burbach C, Volkmann D (2009a) Intracellular domains and polarity in root apices: from synaptic domains to plant neurobiology. Nova Acta Leopold 96:103–122

    Google Scholar 

  • Baluška F, Mancuso S, Volkmann D, Barlow PW (2009b) The ‘root-brain’ hypothesis of Charles and Francis Darwin: revival after more than 125 years. Plant Signal Behav 4(1121):1127

    Google Scholar 

  • Baluška F, Mancuso S, Volkmann D, Barlow PW (2010) Root apex transition zone: a signalling-response nexus in the root. Trends Plant Sci 15:402–408

    Article  PubMed  CAS  Google Scholar 

  • Barbier-Brygoo H, Ephritikhine G, Klämbt D, Ghislain M, Guern J (1989) Functional evidence for an auxin receptor at the plasmalemma of tobacco mesophyll protoplasts. Proc Natl Acad Sci U S A 86:891–895

    Article  PubMed  CAS  Google Scholar 

  • Barlow PW, Volkmann D, Baluška F (2004) Polarity in roots. In: Lindsey K (ed) Polarity in plants. Blackwell Publishing, pp 192–241

    Google Scholar 

  • Bezanilla M, Horton AC, Sevener HC, Quatrano RS (2003) Phylogenetic analysis of new plant myosin sequences. J Mol Evol 57:229–239

    Article  PubMed  CAS  Google Scholar 

  • Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433:39–44

    Article  PubMed  CAS  Google Scholar 

  • Boutté Y, Crosnier MT, Carraro N, Traas J, Satiat-Jeunemaitre B (2006) The plasma membrane recycling pathway and cell polarity in plants: studies on PIN proteins. J Cell Sci 119:1255–1265

    Article  PubMed  CAS  Google Scholar 

  • Chen R, Masson PH (2005) Auxin transport and recycling of PIN proteins in plants. In: Samaj J, Baluska F, Menzel D (eds) Plant endocytosis. Springer Verlag, pp 139–157

    Google Scholar 

  • Chow CM, Neto H, Foucart C, Moore I (2008) Rab-A2 and Rab-A3 GTPases define a trans-golgi endosomal membrane domain in Arabidopsis that contributes substantially to the cell plate. Plant Cell 20:101–123

    Article  PubMed  CAS  Google Scholar 

  • Collings DA, White RG, Overall RL (1992) Ionic current changes associated with the gravity-induced bending response in roots of Zea mays L. Plant Physiol 100:1417–1426

    Article  PubMed  CAS  Google Scholar 

  • Dahlke RI, Luethen H, Steffens B (2010) ABP1: an auxin receptor for fast responses at the plasma membrane. Plant Signal Behav 5:1–3

    Article  PubMed  CAS  Google Scholar 

  • deGuzman CC, dela Fuente RK (1984) Polar calcium flux in sunflower hypocotyl segments, I. The effect of auxin. Plant Physiol 76:347–352

    Article  CAS  Google Scholar 

  • Dela Fuente RK (1984) Role of calcium in the polar secretion of indoleacetic acid. Plant Physiol 76:334–342

    Article  Google Scholar 

  • Dello Ioio R, Linhares FS, Scacchi E, Casamitjana-Martinez E, Heidstra R, Costantino P, Sabatini S (2007) Cytokinins determine Arabidopsis root-meristem size by controlling cell differentiation. Curr Biol 17:678–682

    Article  PubMed  CAS  Google Scholar 

  • Depuydt S, Hardtke CS (2011) Hormone signalling crosstalk in plant growth regulation. Curr Biol 21:R365–R373

    Article  PubMed  CAS  Google Scholar 

  • Dettmer J, Hong-Hermesdorf A, Stierhof YD, Schumacher K (2006) Vacuolar H+-ATPase activity is required for endocytic and secretory trafficking in Arabidopsis. Plant Cell 18:715–730

    Article  PubMed  CAS  Google Scholar 

  • Dhonukshe P, Baluška F, Schlicht M, Hlavačka A, Šamaj J, Friml J, Gadella TWJ Jr (2006) Endocytosis of cell surface material mediates cell plate formation during plant cytokinesis. Dev Cell 10:137–150

    Article  PubMed  CAS  Google Scholar 

  • Drake GA, Carr DJ, Anderson WP (1978) Plasmolysis, plasmodesmata, and the electrical coupling of oat coleoptile cells. J Exp Bot 29:1205–1214

    Article  Google Scholar 

  • Effendi Y, Rietz S, Fischer U, Scherer GF (2011) The heterozygous abp1/ABP1 insertional mutant has defects in functions requiring polar auxin transport and in regulation of early auxin-regulated genes. Plant J 65:282–294

    Article  PubMed  CAS  Google Scholar 

  • Epel BL, Erlanger MA (1991) Light regulates symplastic communication in etiolated corn seedlings. Physiol Plant 83:149–153

    Article  CAS  Google Scholar 

  • Evans EC III (1964) Polar transport of calcium in the primary root of Zea mays. Science 144:174–177

    Article  PubMed  CAS  Google Scholar 

  • Felten J, Kohler A, Morin E, Bhalerao RP, Palme K, Martin F, Ditengou FA, Legué V (2009) The ectomycorrhizal fungus Laccaria bicolor stimulates lateral root formation in poplar and Arabidopsis through auxin transport and signaling. Plant Physiol 151:1991–2005

    Article  PubMed  CAS  Google Scholar 

  • Felten J, Legué V, Ditengou FA (2010) Lateral root stimulation in the early interaction between Arabidopsis thaliana and the ectomycorrhizal fungus Laccaria bicolor: is fungal auxin the trigger? Plant Signal Behav 5:864–867

    Article  PubMed  CAS  Google Scholar 

  • Feraru E, Feraru MI, Kleine-Vehn J, Martinière A, Mouille G, Vanneste S, Vernhettes S, Runions J, Friml J (2011) PIN polarity maintenance by the cell wall in Arabidopsis. Curr Biol 21:338–343

    Article  PubMed  CAS  Google Scholar 

  • Friml J (2003) Auxin transport–shaping the plant. Curr Opin Plant Biol 6:7–12

    Article  PubMed  CAS  Google Scholar 

  • Garnett P, Steinacher A, Stepney S, Clayton R, Leyser O (2010) Computer stimulation: the imaginary friend of auxin transport biology. BioEssays 32:828–835

    Article  PubMed  CAS  Google Scholar 

  • Geldner N, Hyman DL, Wang X, Schumacher K, Chory J (2007) Endosomal signaling of plant steroid receptor kinase BRI1. Genes Dev 21:1598–1602

    Article  PubMed  CAS  Google Scholar 

  • Gojon A, Krouk G, Perrine-Walker F, Laugier E (2011) Nitrate transceptor(s) in plants. J Exp Bot 62:2299–2308

    Article  PubMed  CAS  Google Scholar 

  • Goldsmith MHM (1967a) Movement of pulses of labeled auxin in corn coleoptiles. Plant Physiol 42:258–263

    Article  PubMed  CAS  Google Scholar 

  • Goldsmith MHM (1967b) Separation of transit of auxin from uptake: average velocity and reversible inhibition by anaerobic conditions. Science 156:661–663

    Article  PubMed  CAS  Google Scholar 

  • Golomb L, Abu-Abied M, Belausov E, Sadot E (2008) Different subcellular localizations and functions of Arabidopsis myosin VIII. BMC Plant Biol 8:3

    Article  PubMed  CAS  Google Scholar 

  • Goswami KKA, Audus LJ (1976) Distribution of calcium, potassium and phosphorous in Helianthus anuus hypocotyls and Zea mays coleoptiles in relation to tropic stimuli and curvatures. Ann Bot 40:49–64

    CAS  Google Scholar 

  • Hacham Y, Sela A, Friedlander L, Savaldi-Goldstein S (2011) BRI1 activity in the root meristem involves post-transcriptional regulation of PIN auxin efflux carriers. Plant Signal Behav 7:68–70

    Article  Google Scholar 

  • Hause G, Šamaj J, Menzel D, Baluška F (2006) Fine structural analysis of brefeldin a-induced compartment formation after high-pressure freeze fixation of maize root epidermis: compound exocytosis resembling cell plate formation during cytokinesis. Plant Signal Behav 1:134–139

    Article  PubMed  CAS  Google Scholar 

  • Hertel R, Lomax TL, Briggs WR (1983) Auxin transport in membrane vesicles from Cucurbita pepo L. Planta 157:193–201

    Article  CAS  Google Scholar 

  • Heyn A, Hoffmann S, Hertel R (1987) In vitro auxin transport in membrane vesicles from maize coleoptiles. Planta 172:285–287

    Article  CAS  Google Scholar 

  • Hochholdinger F, Zimmermann R (2008) Conserved and diverse mechanisms in root development. Curr Opin Plant Biol 11:70–74

    Article  PubMed  CAS  Google Scholar 

  • Hodge A (2009) Root decisions. Plant Cell Environ 32:628–640

    Article  PubMed  Google Scholar 

  • Hössel D, Schmeiser C, Hertel R (2005) Specificity patterns indicate that auxin exporters and receptors are the same proteins. Plant Biol 7:41–48

    Article  PubMed  CAS  Google Scholar 

  • Hundal HS, Taylor PM (2009) Amino acid transceptors: gate keepers of nutrient exchange and regulators of nutrient signaling. Am J Physiol Endocrinol Metab 296:E603–E613

    Article  PubMed  CAS  Google Scholar 

  • Jenkinson IS, Scott BIH (1961) Bioelectric oscillations of bean roots: further evidence for a feedback oscillator. I. Extracellular response to oscillations in osmotic pressure and auxin. Aust J Biol Sci 14:231–247

    CAS  Google Scholar 

  • Jönsson H, Gruel J, Krupinski P, Troein C (2011) On evaluating models in computational morphodynamics. Curr Opin Plant Biol 15:103–110

    Article  PubMed  Google Scholar 

  • Juniper BE, Barlow PW (1969) The distribution of plasmodesmata in the root tip of maize. Planta 89:352–360

    Article  Google Scholar 

  • Kang BH (2011) Shrinkage and fragmentation of the trans-Golgi network in non-meristematic plant cells. Plant Signal Behav 6:884–886

    Article  PubMed  CAS  Google Scholar 

  • Kasprowicz A, Szuba A, Volkmann D, Baluška F, Wojtaszek F (2009) Nitric oxide modulates dynamic actin cytoskeleton and vesicle trafficking in a cell type-specific manner in root apices. J Exp Bot 60:1605–1617

    Article  PubMed  CAS  Google Scholar 

  • Kleine-Vehn J, Friml J (2008) Polar targeting and endocytic recycling in auxin-dependent plant development. Annu Rev Cell Dev Biol 24:447–473

    Article  PubMed  CAS  Google Scholar 

  • Kramer EM (2009) Auxin-regulated cell polarity: an inside job? Trends Plant Sci 14:242–247

    Article  PubMed  CAS  Google Scholar 

  • Krecek P, Skupa P, Libus J, Naramoto S, Tejos R, Friml J, Zazímalová E (2009) The PIN-FORMED (PIN) protein family of auxin transporters. Genome Biol 10:249

    Article  PubMed  CAS  Google Scholar 

  • Kriel J, Haesendonckx S, Rubio-Texeira M, Van Zeebroeck G, Thevelein JM (2011) From transporter to transceptor: signaling from transporters provokes re-evaluation of complex trafficking and regulatory controls: endocytic internalization and intracellular trafficking of nutrient transceptors may, at least in part, be governed by their signaling function. BioEssays 33:870–879

    Article  PubMed  CAS  Google Scholar 

  • Krupinski P, Jönsson H (2010) Modeling auxin-regulated development. Cold Spring Harb Perspect Biol 2:a001560

    Article  PubMed  CAS  Google Scholar 

  • Kwon C, Panstruga R, Schulze-Lefert P (2008) Les liaisons dangereuses: immunological synapse formation in animals and plants. Trends Immunol 29:159–166

    Google Scholar 

  • Lam SK, Cai Y, Hillmer S, Robinson DG, Jiang L (2008) SCAMPs highlight the developing cell plate during cytokinesis in tobacco BY-2 cells. Plant Physiol 147:1637–1645

    Article  PubMed  CAS  Google Scholar 

  • Lee JS, Evans ML (1985) Polar transport of calcium across elongation zone of gravistimulated roots. Plant Cell Physiol 26:1587–1595

    PubMed  CAS  Google Scholar 

  • Lee JS, Mulkey TJ, Evans ML (1983) Gravity-induced polar transport of calcium across root tips of maize. Plant Physiol 73:874–876

    Article  PubMed  CAS  Google Scholar 

  • Lee JS, Mulkey TJ, Evans ML (1984) Inhibition of polar calcium movement and gravitropism in roots treated with auxin-transport inhibitors. Planta 160:536–543

    Article  PubMed  CAS  Google Scholar 

  • Lew RR (1994) Regulation of electrical coupling between Arabidopsis root hairs. Planta 193:67–73

    Article  CAS  Google Scholar 

  • Lima PT, Faria VG, Patraquim P, Ramos AC, Feijó JA, Sucena E (2009) Plant-microbe symbioses: new insights into common roots. Bioessays 31:1233–1244

    Google Scholar 

  • Lomax TL, Mehlhorn RJ, Briggs WR (1985) Active auxin uptake by zucchini membrane vesicles: quantitation using ESR volume and ApH determinations. Proc Natl Acad Sci U S A 82:6541–6545

    Article  PubMed  CAS  Google Scholar 

  • Mancuso S, Boselli M (2002) Characterisation of the oxygen fluxes in the division, elongation and mature zones of vitis roots: influence of oxygen availability. Planta 214:767–774

    Google Scholar 

  • Mancuso S, Marras AM, Magnus V, Baluska F (2005) Noninvasive and continuous recordings of auxin fluxes in intact root apex with a carbon nanotube-modified and self-referencing microelectrode. Anal Biochem 341:344–351

    Article  PubMed  CAS  Google Scholar 

  • Mancuso S, Marras AM, Mugnai S, Schlicht M, Zarsky V, Li G, Song L, Hue HW, Baluška F (2007) Phospholipase Dζ2 drives vesicular secretion of auxin for its polar cell–cell transport in the transition zone of the root apex. Plant Signal Behav 2:240–244

    Article  PubMed  Google Scholar 

  • Masi E, Ciszak M, Stefano G, Renna L, Azzarello E, Pandolfi C, Mugnai S, Baluska F, Arecchi FT, Mancuso S (2009) Spatiotemporal dynamics of the electrical network activity in the root apex. Proc Natl Acad Sci U S A 106:4048–4053

    Article  PubMed  CAS  Google Scholar 

  • Maule AJ, Benitez-Alfonso Y, Faulkner C (2011) Plasmodesmata—membrane tunnels with attitude. Curr Opin Plant Biol 14:1–8

    Article  CAS  Google Scholar 

  • Maurel C, Leblanc N, Barbier-Brygoo H, Perrot-Rechenmann C, Bouvier-Durand M, Guern J (1994) Alterations of auxin perception in rolB-transformed tobacco protoplasts. Time course of rolB mRNA expression and increase in auxin sensitivity reveal multiple control by auxin. Plant Physiol 105:1209–1215

    Article  PubMed  CAS  Google Scholar 

  • McLamore ES, Diggs A, Calvo Marzal P, Shi J, Blakeslee JJ, Peer WA, Murphy AS, Porterfield DM (2010a) Non-invasive quantification of endogenous root auxin transport using an integrated flux microsensor technique. Plant J 63:1004–1016

    Article  PubMed  CAS  Google Scholar 

  • McLamore ES, Jaroch D, Rameez Chatni M, Porterfield DM (2010b) Self-referencing optrodes for measuring spatially resolved, real-time metabolic oxygen flux in plant systems. Planta 232:1087–1099

    Article  PubMed  CAS  Google Scholar 

  • Merks RMH, de Peer YV, Inze D, Beemster GTS (2007) Canalization without flux sensors: a traveling-wave hypothesis. Trends Plant Sci 12:384–390

    Article  PubMed  CAS  Google Scholar 

  • Michniewicz M, Zago MK, Abas L, Weijers D, Schweighofer A, Meskiene I, Heisler MG, Ohno C, Zhang J, Huang F, Schwab R, Weigel D, Meyerowitz EM, Luschnig C, Offringa R, Friml J (2007) Antagonistic regulation of PIN phosphorylation by PP2A and PINOID directs auxin flux. Cell 130:1044–1056

    Article  PubMed  CAS  Google Scholar 

  • Mongrand S, Stanislas T, Bayer EMF, Lherminier J, Simon-Plas F (2010) Membrane rafts in plant cells. Trends Plant Sci 15:656–663

    Article  PubMed  CAS  Google Scholar 

  • Moreno-Risueno MA, Benfey PN (2011) Time-based patterning in development: the role of oscillating gene expression. Transcription 2:124–129

    Article  PubMed  Google Scholar 

  • Moreno-Risueno MA, Van Norman JM, Moreno A, Zhang J, Ahnert SE, Benfey PN (2010) Oscillating gene expression determines competence for periodic Arabidopsis root branching. Science 329:1306–1311

    Article  PubMed  CAS  Google Scholar 

  • Mravec J, Skůpa P, Bailly A, Hoyerová K, Krecek P, Bielach A, Petrásek J, Zhang J, Gaykova V, Stierhof YD, Dobrev PI, Schwarzerová K, Rolcík J, Seifertová D, Luschnig C, Benková E, Zazímalová E, Geisler M, Friml J (2009) Subcellular homeostasis of phytohormone auxin is mediated by the ER-localized PIN5 transporter. Nature 459:1136–1140

    Article  PubMed  CAS  Google Scholar 

  • Mugnai S, Azzarello E, Baluška F, Mancuso S (2012) Local root apex hypoxia at the transition zone induces NO-mediated hypoxic acclimation of the whole root. Plant Cell Physiology [Accepted]

    Google Scholar 

  • Napier RM, David KM, Perrot-Rechenmann C (2002) A short history of auxin-binding proteins. Plant Mol Biol 49:339–348

    Article  PubMed  CAS  Google Scholar 

  • Panigrahi KC, Panigrahy M, Vervliet-Scheebaum M, Lang D, Reski R, Johri MM (2009) Auxin-binding proteins without KDEL sequence in the moss Funaria hygrometrica. Plant Cell Rep 28:1747–1758

    Article  PubMed  CAS  Google Scholar 

  • Paponov IA, Teale WD, Trebar M, Blilou I, Palme K (2005) The PIN auxin efflux facilitators: evolutionary and functional perspectives. Trends Plant Sci 10:170–177

    Article  PubMed  CAS  Google Scholar 

  • Peremyslov VV, Mockler TC, Filichkin SA, Fox SE, Jaiswal P, Makarova KS, Koonin EV, Dolja VV (2011) Expression, splicing, and evolution of the myosin gene family in plants. Plant Physiol 155:1191–1204

    Article  PubMed  CAS  Google Scholar 

  • Pinosa F (2010) Analysis of PIN2 polarity regulation and Mob1 function in Arabidopsis root development. PhD Thesis, Albert-Ludwig-Universität Freiburg im Breisgau, Germany

    Google Scholar 

  • Rahman A, Takahashi M, Shibasaki K, Wu S, Inaba T, Tsurumi S, Baskin TI (2010) Gravitropism of Arabidopsis thaliana roots requires the polarization of PIN2 toward the root tip in meristematic cortical cells. Plant Cell 22:1762–1776

    Article  PubMed  CAS  Google Scholar 

  • Reddy ASN, Day IS (2001) Analysis of the myosins encoded in the recently completed Arabidopsis thaliana genome sequence. Genome Biol 2:0024.1–0024.17

    Article  Google Scholar 

  • Richter S, Geldner N, Schrader J, Wolters H, Stierhof YD, Rios G, Koncz C, Robinson DG, Jürgens G (2007) Functional diversification of closely related ARF–GEFs in protein secretion and recycling. Nature 448:488–492

    Article  PubMed  CAS  Google Scholar 

  • Richter S, Anders N, Wolters H, Beckmann H, Thomann A, Heinrich R, Schrader J, Singh MK, Geldner N, Mayer U, Jürgens G (2010) Role of the GNOM gene in Arabidopsis apical-basal patterning–from mutant phenotype to cellular mechanism of protein action. Eur J Cell Biol 89:138–144

    Article  PubMed  CAS  Google Scholar 

  • Robert S, Kleine-Vehn J, Barbez E, Sauer M, Paciorek T, Baster P, Vanneste S, Zhang J, Simon S, Čovanová M, Hayashi K, Dhonukshe P, Yang Z, Bednarek SY, Jones AM, Luschnig C, Aniento F, Zažímalová E, Friml J (2010) ABP1 mediates auxin inhibition of clathrin-dependent endocytosis in Arabidopsis. Cell 143:111–121

    Article  PubMed  CAS  Google Scholar 

  • Rück A, Palme K, Venis MA, Napier RM, Felle H (1993) Patch-clamp analysis establishes a role for an auxin binding protein in the auxin stimulation of plasma membrane current in Zea mays protoplasts. Plant J 4:41–46

    Article  Google Scholar 

  • Sachs T (1969) Polarity and the induction of organized vascular tissues. Ann Bot 33:263–275

    Google Scholar 

  • Sachs T (1991) Cell polarity and tissue patterning in plants. Development 91(Suppl 1):83–93

    Google Scholar 

  • Santuari L, Scacchi E, Rodriguez-Villalon A, Salinas P, Dohmann EM, Brunoud G, Vernoux T, Smith RS, Hardtke CS (2011) Positional information by differential endocytosis splits auxin response to drive Arabidopsis root meristem growth. Curr Biol 21:1918–1923

    Article  PubMed  CAS  Google Scholar 

  • Šamaj J, Baluška F, Voigt B, Schlicht M, Volkmann D, Menzel D (2004) Endocytosis, actin cytoskeleton and signalling. Plant Physiol 135:1150–1161

    Article  PubMed  Google Scholar 

  • Šamaj J, Read ND, Volkmann D, Menzel D, Baluška F (2005) The endocytic network in plants. Trends Cell Biol 15:425–433

    Article  PubMed  CAS  Google Scholar 

  • Samaj J, Chaffey NJ, Tirlapur U, Jasik J, Volkmann D, Menzel D, Baluška F (2006) Actin and myosin VIII in plasmodesmata cell–cell channels. In: Baluška F et al (eds) Cell–cell channels. Landes bioscience, pp 119–134

    Google Scholar 

  • Sattarzadeh A, Franzen R, Schmelzer E (2008) The Arabidopsis class VIII myosin ATM2 is involved in endocytosis. Cell Motil Cytoskel 65:457–468

    Article  CAS  Google Scholar 

  • Scacchi E, Osmont KS, Beuchat J, Salinas P, Navarrete-Gómez M, Trigueros M, Ferrándiz C, Hardtke CS (2009) Dynamic, auxin-responsive plasma membrane-to-nucleus movement of Arabidopsis BRX. Development 136:2059–2067

    Article  PubMed  CAS  Google Scholar 

  • Scacchi E, Salinas P, Gujas B, Santuari L, Krogan N, Ragni L, Berleth T, Hardtke CS (2010) Spatio-temporal sequence of cross-regulatory events in root meristem growth. Proc Natl Acad Sci U S A 107:22734–22739

    Article  PubMed  CAS  Google Scholar 

  • Scherer GF (2011) AUXIN-BINDING-PROTEIN1, the second auxin receptor: what is the significance of a two-receptor concept in plant signal transduction? J Exp Bot 62:3339–3357

    Article  PubMed  CAS  Google Scholar 

  • Schlicht M, Strnad M, Scanlon MJ, Mancuso S, Hochholdinger F, Palme K, Volkmann D, Menzel D, Baluška F (2006) Auxin immunolocalization implicates vesicular neurotransmitter-like mode of polar auxin transport in root apices. Plant Signal Behav 1:122–133

    Article  PubMed  Google Scholar 

  • Schlicht M, Samajová O, Schachtschabel D, Mancuso S, Menzel D, Boland W, Baluska F (2008) D’orenone blocks polarized tip growth of root hairs by interfering with the PIN2-mediated auxin transport network in the root apex. Plant J 55:709–717

    Article  PubMed  CAS  Google Scholar 

  • Scott BIH (1957) Electric oscillations generated by plant roots and a possible feedback mechanism responsible for them. Aust J Biol Sci 10:164–179

    Google Scholar 

  • Seagull RW (1983) Differences in the frequency and disposition of plasmodesmata resulting from root cell elongation. Planta 159:497–504

    Article  Google Scholar 

  • Shabala S, Shabala L, Gradmann D, Chen Z, Newman I, Mancuso S (2006) Oscillations in plant membrane transport: model predictions, experimental validation, and physiological implications. J Exp Bot 57:171–184

    Article  PubMed  CAS  Google Scholar 

  • Shen WH, Davioud E, David C, Barbier-Brygoo H, Tempé J, Guern J (1990) High sensitivity to auxin is a common feature of hairy root. Plant Physiol 94:554–560

    Article  PubMed  CAS  Google Scholar 

  • Shen H, Hou NY, Schlicht M, Wan Y, Mancuso S, Baluška F (2008) Aluminium toxicity targets PIN2 in Arabidopsis root apices: effects on PIN2 endocytosis, vesicular recycling, and polar auxin transport. Chin Sci Bull 53:2480–2487

    Article  CAS  Google Scholar 

  • Shen C, Bai Y, Wang S, Zhang S, Wu Y, Chen M, Jiang D, Qi Y (2010) Expression profile of PIN, AUX/LAX and PGP auxin transporter gene families in Sorghum bicolor under phytohormone and abiotic stress. FEBS J 277:2954–2969

    Article  PubMed  CAS  Google Scholar 

  • Spanswick RM (1972) Electrical coupling between cells of higher plants: A direct demonstration of intercellular communication. Planta 102:215–227

    Article  CAS  Google Scholar 

  • Splivallo R, Fischer U, Göbel C, Feussner I, Karlovsky P (2009) Truffles regulate plant root morphogenesis via the production of auxin and ethylene. Plant Physiol 150:2018–2029

    Article  PubMed  CAS  Google Scholar 

  • Stoma S, Lucas M, Chopard J, Schaedel M, Traas J, Godin C (2008) Flux-based transport enhancement as a plausible unifying mechanism for auxin transport in meristem development. PLoS Comput Biol 4:e1000207

    Article  PubMed  CAS  Google Scholar 

  • Tarr PT, Tarling EJ, Bojanic DD, Edwards PA, Baldán Á (2009) Emerging new paradigms for ABCG transporters. Biochim Biophys Acta 1791:584–593

    PubMed  CAS  Google Scholar 

  • Teale WD, Paponov IA, Palme K (2006) Auxin in action: signalling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol 7:847–859

    Article  PubMed  CAS  Google Scholar 

  • Teh OK, Moore I (2007) An ARF–GEF acting at the Golgi and in selective endocytosis in polarized plant cells. Nature 448:493–496

    Article  PubMed  CAS  Google Scholar 

  • Thevelein JM, Voordeckers K (2009) Functioning and evolutionary significance of nutrient transceptors. Mol Biol Evol 26:2407–2414

    Article  PubMed  CAS  Google Scholar 

  • Thompson RF, Langford GM (2002) Myosin superfamily evolutionary history. Anat Rec 268:276–289

    Article  PubMed  CAS  Google Scholar 

  • Tilsner J, Amari K, Torrance L (2011) Plasmodesmata viewed as specialised membrane adhesion sites. Protoplasma 248:39–60

    Article  PubMed  CAS  Google Scholar 

  • Traas J, Vernoux T (2010) Oscillating roots. Science 329:1290–1291

    Article  PubMed  CAS  Google Scholar 

  • Trewavas A (2009) What is plant behaviour? Plant Cell Environ 32:606–616

    Article  PubMed  Google Scholar 

  • Tromas A, Braun N, Muller P, Khodus T, Paponov IA, Palme K, Ljung K, Lee JY, Benfey P, Murray JA, Scheres B, Perrot-Rechenmann C (2009) The AUXIN BINDING PROTEIN 1 is required for differential auxin responses mediating root growth. PLoS ONE 4:e6648

    Article  PubMed  CAS  Google Scholar 

  • Tromas A, Paponov I, Perrot-Rechenmann C (2010) AUXIN BINDING PROTEIN 1: functional and evolutionary aspects. Trends Plant Sci 15:436–446

    Article  PubMed  CAS  Google Scholar 

  • Van Norman JM, Breakfield NW, Benfey PN (2011) Intercellular communication during plant development. Plant Cell 23:855–864

    Article  PubMed  CAS  Google Scholar 

  • Vatsa P, Chiltz A, Bourque S, Wendehenne D, Garcia-Brugger A, Pugin A (2011) Involvement of putative glutamate receptors in plant defence signaling and NO production. Biochimie 93:2095–2101

    Article  PubMed  CAS  Google Scholar 

  • Viotti C, Bubeck J, Stierhof YD, Krebs M, Langhans M, van den Berg W, van Dongen W, Richter S, Geldner N, Takano J, Jürgens G, de Vries SC, Robinson DG, Schumacher K (2010) Endocytic and secretory traffic in Arabidopsis merge in the trans-Golgi network/early endosome, an independent and highly dynamic organelle. Plant Cell 22:1344–1357

    Article  PubMed  CAS  Google Scholar 

  • Volkmann D, Baluška F (1999) The actin cytoskeleton in plants: from transport networks to signaling networks. Microsc Res Tech 47:135–154

    Article  PubMed  CAS  Google Scholar 

  • Volkmann D, Baluška F (2006) Gravity: one of the driving forces of evolution. Protoplasma 229:143–148

    Article  PubMed  CAS  Google Scholar 

  • Volkmann D, Mori T, Tirlapur UK, König K, Fujiwara T, Kendrick-Jones J, Baluška F (2003) Unconventional myosins of the plant-specific class VIII: endocytosis, cytokinesis, plasmodesmata–pit-fields, and cell-to-cell coupling. Cell Biol Int 27:289–291

    Article  PubMed  CAS  Google Scholar 

  • Wabnik K, Govaerts W, Friml J, Kleine-Vehn J (2011) Feedback models for polarized auxin transport: an emerging trend. Mol BioSyst 7:2352–2359

    Article  PubMed  CAS  Google Scholar 

  • Wabnik K, Kleine-Vehn J, Balla J, Sauer M, Naramoto S, Reinöhl V, Merks RM, Govaerts W, Friml J (2010) Emergence of tissue polarization from synergy of intracellular and extracellular auxin signaling. Mol Syst Biol 6:447

    Article  PubMed  CAS  Google Scholar 

  • Wan Y-L, Jasik J, Wang L, Hao H, Volkmann D, Menzel D, Mancuso S, Baluška F, Lin J-X (2012) The signal transducer NPH3 integrates the phototropin1 photosensor with PIN2-based polar auxin transport in arabidopsis root phototropism. Plant Cell [In press]

    Google Scholar 

  • Wang JR, Hu H, Wang GH, Li J, Chen JY, Wu P (2009) Expression of PIN genes in rice (Oryza sativa L.): tissue specificity and regulation by hormones. FEBS J 277:2954–2969

    Google Scholar 

  • White RG, Barton DA (2011) The cytoskeleton in plasmodesmata: a role in intercellular transport? J Exp Bot 62:5249–5266

    Google Scholar 

  • Wisniewska J, Xu J, Seifertová D, Brewer PB, Ruzicka K, Blilou I, Rouquié D, Benková E, Scheres B, Friml J (2006) Polar PIN localization directs auxin flow in plants. Science 312:883

    Article  PubMed  CAS  Google Scholar 

  • Wojtaszek P, Volkmann D, Baluška F (2004) Polarity and cell walls. In: Lindsey K (ed) Polarity in Plants. Blackwell Publishing, pp 72–121

    Google Scholar 

  • Wojtaszek P, Baluska F, Kasprowicz A, Luczak M, Volkmann D (2007) Domain-specific mechanosensory transmission of osmotic and enzymatic cell wall disturbances to the actin cytoskeleton. Protoplasma 230:217–230

    Article  PubMed  CAS  Google Scholar 

  • Wolters H, Jürgens G (2009) Survival of the flexible: hormonal growth control and adaptation in plant development. Nat Rev Genet 10:305–317

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Scheres B (2005) Dissection of Arabidopsis ADP-RIBOSYLATION FACTOR 1 function in epidermal cell polarity. Plant Cell 17:525–536

    Article  PubMed  CAS  Google Scholar 

  • Xu T, Wen M, Nagawa S, Fu Y, Chen JG, Wu MJ, Perrot-Rechenmann C, Friml J, Jones AM, Yang Z (2010) Cell surface- and rho GTPase-based auxin signaling controls cellular interdigitation in Arabidopsis. Cell 143:99–110

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Vanneste S, Brewer PB, Michniewicz M, Grones P, Kleine-Vehn J, Löfke C, Teichmann T, Bielach A, Cannoot B, Hoyerová K, Chen X, Xue HW, Benková E, Zažímalová E, Friml J (2011a) Inositol trisphosphate-induced Ca2+ signaling modulates auxin transport and PIN polarity. Dev Cell 20:855–866

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Zhang H, Liu P, Hao H, Jin JB, Lin J (2011b) Arabidopsis R-SNARE proteins VAMP721 and VAMP722 are required for cell plate formation. PLoS ONE 6:e26129

    Article  PubMed  CAS  Google Scholar 

  • Zhao H, Hertel R, Ishikawa H, Evans ML (2002) Species differences in ligand specificity of auxin-controlled elongation and auxin transport: comparing Zea and Vigna. Planta 216:293–301

    Article  PubMed  CAS  Google Scholar 

  • Zhu T, Lucas WJ, Rost TL (1998a) Directional cell-to-cell communication, in the Arabidopsis root apical meristem. I. An ultrastructural, and functional analysis. Protoplasma 203:35–47

    Article  Google Scholar 

  • Zhu T, O’Quinn RL, Lucas WJ, Rost TL (1998b) Directional cell-to-cell communication in Arabidopsis root apical meristem. II. Dynamics of plasmodesmatal formation. Protoplasma 204:84–93

    Article  Google Scholar 

  • Zhu T, Rost TL (2000) Directional cell-to-cell communication, in the Arabidopsis root apical meristem. III. Plasmodesmata turnover and apoptosis in meristem and root cap cells during four weeks after germination. Protoplasma 213:99–107

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to František Baluška .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baluška, F. (2012). Actin, Myosin VIII and ABP1 as Central Organizers of Auxin-Secreting Synapses. In: Volkov, A. (eds) Plant Electrophysiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29110-4_12

Download citation

Publish with us

Policies and ethics