Skip to main content

Moon and Cosmos: Plant Growth and Plant Bioelectricity

  • Chapter
  • First Online:
Plant Electrophysiology

Abstract

Many of the growth movements of plants (diurnal leaf movements, and perhaps stem dilatation cycles) initiate action potentials which are propagated within the plant body. Action potentials are then able to serve as informational signals that regulate further processes. Some movements appear to be regulated by turning points in the time-courses of the lunisolar tidal accelerative force, when the rate of accelerative change is zero. There are, in addition, other more constitutive bioelectrical phenomena in plants, such as electrical potential differences. These, also, are critically examined in relation to the lunisolar tide. Because of its ever-present nature, it is difficult to analyse experimentally effects of this lunisolar tide on organic processes; nevertheless, it may be possible to take steps towards validating the Moon’s effect. This would take advantage of the predictability of the tidal acceleration profile and, hence, experiments could be devised to anticipate possible lunisolar tidal effects on biological events. Certain additional cosmic regulators of bioelectric patterns in plants, such as geomagnetic variations are also discussed, as are the effects of natural seismic events.

The world is never quiet, even its silence eternally resounds with the same notes, in vibrations which escape our ears.

Albert Camus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The tidal acceleration of the Moon at the Earth’s surface is 1.1 x 10−7 g, whereas that of the Sun is 0.46 of this value at 0.52 x 10−7 g. The mass of Earth is 81 times that of the Moon, whereas the mass of the Sun is 3.3 x 105 that of the Earth.

  2. 2.

    Electrodes inserted into this location within a tree trunk have the capability of provoking a wound response from the surrounding cellular tissue which can, in turn, isolate the electrode, thereby diminishing the electrical potential reading. This does not seem to have occurred in Burr’s experiments, but may account for a diminution of signal in the long-term recordings of Gibert et al. (2006—see their Fig. 6 and results from mid-July 2004 onwards).

  3. 3.

    Nishimura and Fukushima (2009) considered animal activity in relation to moonlight and linked this with magnetoreception. The light of Full Moon has different polarisation properties compared with the light received from the Moon at other lunar phases.

References

  • Annila A, Kuismanen E (2009) Natural hierarchy emerges from energy dispersal. BioSystems 95:227–233

    Article  PubMed  Google Scholar 

  • Antkowiak B, Meyer W-E, Engelmann W (1991) Oscillations of the membrane potential of pulvinar motor cells in situ in relation to leaflet movements of Desmodium motiorum. J Exp Bot 42:901–910

    Article  Google Scholar 

  • Baly ECC, Semmens ES (1924) The selective action of polarised light.–I. The hydrolysis of starch. Proc R Soc London, Ser B 97:250–253

    Article  CAS  Google Scholar 

  • Barlow PW (1999) Living plant systems: how robust are they in the absence of gravity? Adv Space Res 23:1975–1986

    Article  PubMed  CAS  Google Scholar 

  • Barlow PW (2005) From cambium to early cell differentiation within the secondary vascular system. In: Holbrook NM, Zwieniecki MA (eds) Vascular transport in plants. Elsevier Academic Press, Amsterdam, pp 279–306

    Chapter  Google Scholar 

  • Barlow PW (2008) Reflections on ‘plant neurobiology’. BioSystems 92:132–147

    Article  PubMed  Google Scholar 

  • Barlow PW (2010) The origins of life, of living and cognition, and of the phytoneural system. In: Abstracts evolution in communication and neural processing. From first organisms and plants to man and beyond. Modena, 18-19 Nov 2010, pp 5–6

    Google Scholar 

  • Barlow PW, Fisahn J (2012) Lunisolar tidal force and the growth of plant roots, and some other of its effects on plant movements. Annals of Botany (in press)

    Google Scholar 

  • Barlow PW, Klingelé E, Mikulecký M (2009) The influence of the lunar-solar tidal acceleration on trees gives a glimpse of how the plant-neurobiological system came into being. In: Abstracts 5th international symposium on plant neurobiology, Firenze, 25–29 May 2009, pp 11–13

    Google Scholar 

  • Barlow PW, Mikulecký M, Střeštík J (2010) Tree-stem diameter fluctuates with the lunar tides and perhaps with geomagnetic activity. Protoplasma 247:25–43

    Article  PubMed  Google Scholar 

  • Beeson CFC, Bhatia BM (1936) On the biology of the Bostrychidae (Coleopt.). Indian For Rec 2:223–323

    Google Scholar 

  • Breus TK, Cornélisson G, Halberg F, Levitin AE (1995) Temporal associations of life with solar and geophysical activity. Ann Geophys 13:1211–1222

    Article  CAS  Google Scholar 

  • Brouwer G (1926) De Periodieke Bewegingen van de Primaire Bladen bij Canavalia ensiformis. HJ Paris, Amsterdam

    Google Scholar 

  • Bünning E (1956) Die physiologische Uhr. Naturwissenschaftliche Rundschau 9:351–357

    Google Scholar 

  • Bünning E (1963) Die Physiologische Uhr. Springer, Heidelberg

    Google Scholar 

  • Bünning E, Moser I (1969) Interference of moonlight with the photoperiodic measurement of time by plants, and their adaptive reaction. Proc Nat Acad Sci USA 62:1018–1022

    Article  PubMed  Google Scholar 

  • Burr HS (1943) Electrical correlates of pure and hybrid strains of sweet corn. Proc Nat Acad Sci USA 29(163):166

    Google Scholar 

  • Burr HS (1944) Moon madness. Yale J Biol Med 16:249–256

    PubMed  CAS  Google Scholar 

  • Burr HS (1945) Diurnal potentials in the Maple tree. Yale J Biol Med 17:727–735

    PubMed  CAS  Google Scholar 

  • Burr HS (1947) Tree potentials. Yale J Biol Med 19:311–318

    PubMed  CAS  Google Scholar 

  • Burr HS (1956) Effect of a severe storm on electric properties of a tree and the earth. Science 124:1204–1205

    Article  PubMed  CAS  Google Scholar 

  • Burr HS, Sinnott EW (1944) Electrical correlates of form in cucurbit fruits. Am J Bot 31:249–253

    Article  Google Scholar 

  • Cantiani M (1978) Il ritmo di accrescimento diurno della douglasia del tiglio e del liriodendro a Vallombrosa. L’Italia Forestale e Montana, No 2:57–74

    Google Scholar 

  • Cantiani M, Sorbetti GF (1989) Transpirazione e ritmo circadiano delle variazzioni reversibli del diametro dei fusti di alcune piante arboree (1a parte). L’Italia Forestale e Montana, No 5:341–372

    Google Scholar 

  • Cantiani M, Cantiani M-G, Guerri Sorbetti F (1994) Rythmes d’accroissement en diameter des arbres forestiers. Révue Forestière Française 46:349–358

    Article  Google Scholar 

  • Cifra M, Fields JZ, Farhadi A (2011) Electromagnetic cellular interactions. Prog Biophys Mol Biol 105:223–246

    Article  PubMed  CAS  Google Scholar 

  • Dengel S, Aeby D, Grace J (2009) A relationship between galactic cosmic radiation and tree rings. New Phytol 184:545–551

    Article  PubMed  Google Scholar 

  • Dodson HW, Hedeman ER (1964) An unexpected effect in solar cosmic ray data related to 29.5 days. J Geophys Res 69:3965–3971

    Article  Google Scholar 

  • Dorda G (2010) Quantisierte Zeit und die Vereinheitlichung von Gravitation und Elektromagnetismus. Cuvillier Verlag, Göttingen

    Google Scholar 

  • Fisahn J, Yazdanbakhsh N, Klingelé E, Barlow P (2012) Sensitivity of developing Arabidopsis roots to lunisolar tidal acceleration: a precise backup clock (submitted)

    Google Scholar 

  • Fraser-Smith AC (1978) ULF tree potential and geomagnetic pulsations. Nature 271:641–642

    Article  Google Scholar 

  • Fraser-Smith AC (1993) ULF magnetic fields generated by electrical storms and their significance to geomagnetic pulsation generation. Geophys Res Lett 20:467–470

    Article  Google Scholar 

  • Fromm J, Bauer T (1994) Action potentials in maize sieve tubes change phloem translocation. J Exp Bot 45:463–469

    Article  Google Scholar 

  • Fromm J, Fei H (1998) Electrical signalling and gas exchange in maize plants in drying soil. Plant Sci 132:203–213

    Article  CAS  Google Scholar 

  • Fromm J, Lautner S (2007) Electrical signals and their physiological function. New Phytol 30:249–257

    CAS  Google Scholar 

  • Gál J, Horváth G, Barta A, Wehner R (2001) Polarization of the moonlit clear night sky measured by full-sky imaging polarimetry at full Moon: comparison of the polarization of moonlit sunlit skies. J Geophys Res 106(D19):22647–22653

    Article  Google Scholar 

  • Galland P, Pazur A (2005) Magnetoperception in plants. J Plant Res 118:371–389

    Article  PubMed  Google Scholar 

  • Gibert D, Le Mouël J-L, Lambs L, Nicollin F, Perrier F (2006) Sap flow and daily electric potential variations in a tree trunk. Plant Sci 171:572–584

    Article  CAS  Google Scholar 

  • Goldsworthy A (1983) The evolution of plant action-potentials. J Theor Biol 103:645–648

    Article  Google Scholar 

  • Grant RA, Halliday T, Balderer WP, Leuenberger F, Newcomer M, Cyr G, Freund FT (2011) Ground water chemistry changes before major earthquakes and possible effects on animals. Int J Environ Res Pub Health 8:1936–1956

    CAS  Google Scholar 

  • Graviou E (1978) Analogies between rhythms in plant material, in atmospheric pressure, and solar lunar periodicities. Int J Biometeorol 22:103–111

    Article  Google Scholar 

  • Guhathakurta A, Dutt BK (1961) Electrical correlate of the pulsatory movement of Desmodium gyrans. Trans Bose Res Inst 24:73–82

    Google Scholar 

  • Henderson IR, Jacobsen SE (2007) Epigenetic inheritance in plants. Nature 207:732–734

    Google Scholar 

  • Holzknecht K, Zürcher E (2006) Tree stems and tides—A new approach and elements of reflexion. Schweizerische Zeitschrift für Forstwesen 157:185–190

    Article  Google Scholar 

  • Hong EJ, West AE, Greenberg ME (2005) Transcriptional control of cognitive development. Curr Opin Neurobiol 15:21–28

    Article  PubMed  CAS  Google Scholar 

  • Kachakhidze MK, Kiladze R, Kachakhidze N, Kukhianidze V, Ramishvili G (2010) Connection of large earthquakes occurring moment with the movement of the Sun and the Moon and with the Earth crust tectonic stress character. Nat Hazards Earth Syst Sci 10:1629–1633

    Article  Google Scholar 

  • Khabarova OV, Dimitrova S (2009) On the nature of people’s reaction to space weather and metereological weather changes. Sun Geosph 4:60–71

    Google Scholar 

  • Klein G (2007) Farewell to the internal clock. A contribution in the field of chronobiology. Springer, New York

    Google Scholar 

  • Koppán A, Szarka L, Wesztergom V (1999) Temporal variation of electrical signal recorded in a standing tree. Acta Geodaetica Geophysica Hungarica 34:169–180

    Google Scholar 

  • Koppán A, Fenyvesi A, Szarka L, Wesztergom V (2000) Annual fluctuation in amplitudes of daily variations of electrical signals measured in the trunk of a standing tree. Comptes Rendus de l’ Académie des Sciences, Paris, Sciences de la Vie/Life Sciences 323:559–563

    Article  Google Scholar 

  • Koppán A, Fenyvesi A, Szarka L, Wesztergom V (2002) Measurement of electric potential difference on trees. Acta Biologica Szegediensis 46(3–4):37–38

    Google Scholar 

  • Koppán A, Szarka L, Wesztergom V (2005) Local variability of electric potential differences on the trunk of Quercus cerris L. Acta Silvatica et Lignaria Hungarica 1:73–81

    Google Scholar 

  • Kozyreva O, Pilipenko V, Engebretson MJ, Yumoto K, Watermann J, Romanova N (2007) In search of a new ULF wave index: comparison of Pc5 power with dynamics of geostationary relativistic electrons. Planet Space Sci 55:755–769

    Article  Google Scholar 

  • Kundt W (1998) The heart of plants. Curr Sci 75:98–102

    Google Scholar 

  • Lautner S, Grams TEE, Matyssek R, Fromm J (2005) Characteristics of electrical signals in poplar and responses in photosynthesis. Plant Physiol 138:2200–2209

    Article  PubMed  CAS  Google Scholar 

  • Le Mouël J-L, Gibert D, Poirier J-P (2010) On transient electric potential variations in a standing tree and atmospheric electricity. CR Geosci 342:95–99

    Article  Google Scholar 

  • Lemström S (1901) Ueber das Verhalten der Flüssigkeiten in Capillarröhhren unter Einfluss eines elektrischen Luftstromes. Annalen der Physik Series 4 5:729–756

    Article  Google Scholar 

  • Lemström S (1904) Electricity in agriculture and horticulture. “The Electrician” Printing and Publishing Company Ltd, London

    Google Scholar 

  • Levin M (2003) Bioelectromagnetics in morphogenesis. Bioelectromagnetics 24:295–315

    Article  PubMed  CAS  Google Scholar 

  • Lodge O (1908) Electricity in agriculture. Nature 78:331–332

    Article  Google Scholar 

  • Lopes RMC, Malin SR, Mazzarella A, Palumbo A (1990) Lunar and solar triggering of earthquakes. Phys Earth Planet Inter 59:127–129

    Article  Google Scholar 

  • MacDougal DT (1921) Growth in trees. Carnegie Institution of Washington Publication No. 307, Washington, p 41

    Google Scholar 

  • Maeda H (1968) Variations in geomagnetic field. Space Sci Rev 8:555–590

    Article  Google Scholar 

  • Markson R (1971) Considerations regarding solar and lunar modulation of geophysical parameters, atmospheric electricity and thunderstorms. Pure Appl Geophys 84:161–200

    Article  Google Scholar 

  • Markson R (1972) Tree potentials and external factors. In: Burr HS (ed) The fields of life. Ballantyne Books, New York, pp 186–206

    Google Scholar 

  • Mehra P (1989) Lunar phases and atmospheric electric field. Adv Atmos Sci 6:239–246

    Article  Google Scholar 

  • Meylan S (1971) Bioélectricité. Quelques problèmes. Masson et Cie, Paris

    Google Scholar 

  • Molchanov AM (1968) The resonant structure of the solar system. The law of planetary distances. Icarus 8:203–215

    Article  Google Scholar 

  • Morat P, Le Mouël JL, Granier A (1994) Electric potential on a tree. A measurement of the sap flow? Comptes Rendus de l’Académie des Sciences, Paris, Sciences de la Vie/Life Sciences 317:98–101

    Google Scholar 

  • Moshelion M, Becker D, Czempinski K, Mueller-Roeber B, Attali B, Hedrich R, Moran N (2002) Diurnal and circadian regulation of putative potassium channels in a leaf moving organ. Plant Physiol 128:634–642

    Article  PubMed  CAS  Google Scholar 

  • Nelson OE, Burr HS (1946) Growth correlates of electromotive forces in maize seeds. Proc Nat Acad Sci USA 32:73–84

    Article  PubMed  CAS  Google Scholar 

  • Nishimura T, Fukushima M (2009) Why animals respond to the full moon: magnetic hypothesis. Biosci Hypotheses 2:399–401

    Article  Google Scholar 

  • Oyarce P, Gurovich L (2009) Electrical signals in avocado trees. Responses to light and water availability conditions. Plant Signal Behav 5:34–41

    Article  Google Scholar 

  • Oyarce P, Gurovich L (2011) Evidence for the transmission of information through electric potentials in injured avocado trees. J Plant Physiol 168:103–108

    Article  PubMed  CAS  Google Scholar 

  • Polevoi VV, Bilova TE, Shevtsov Yu I (2003) Electroosmotic phenomema in plant tissues. Biology Bulletin (English translation of Izvestiya Akademii Nauk, Seriya Biologicheskaya) 30:133–139

    Google Scholar 

  • Ross JJ, Reid JB (2010) Evolution of growth-promoting plant hormones. Funct Plant Biol 37:795–805

    Article  CAS  Google Scholar 

  • Saito Y (2007) Preceding phenomena observed by tree bio-electric potential prior to Noto Penninsula off earthquake. Japan Geoscience Union Meeting 2007. 1–14. (http://www.jsedip.jp/English/Papers/070512_JGU%20Meeting%202007-E.pdf)

  • Sapolsky RM (2004) Mothering style and methylation. Nat Neurosci 7:791–792

    Article  PubMed  CAS  Google Scholar 

  • Semmens ES (1947a) Chemical effects of moonlight. Nature 159:613

    Article  PubMed  CAS  Google Scholar 

  • Semmens ES (1947b) Starch hydrolysis induced by polarized light in stomatal guard cells in living plants. Plant Physiol 22:270–278

    Article  PubMed  CAS  Google Scholar 

  • Sharma S, Dashora N, Galav P, Pandey R (2010) Total solar eclipse of July 22, 2009: its impact on the total electron content and ionospheric electron density in the Indian zone. J Atmos Solar Terr Phys 72:1387–1392

    Article  Google Scholar 

  • Sparks JP, Campbell GS, Black RA (2001) Water content, hydraulic conductivity, and ice formation in winter stems of Pinus contorta: a TDR case study. Oecologia 127:468–475

    Article  Google Scholar 

  • Stahlberg R, Cleland RE, Van Volkenburgh E (2006) Slow wave potentials—a propagating electrical signal unique to higher plants. In: Baluška F, Mancuso S, Volkmann D (eds) Communication in Plants, Springer-Verlag, Berlin, pp 291–308

    Chapter  Google Scholar 

  • Stolov HL, Cameron AGW (1964) Variations of geomagnetic activity with lunar phase. J Geophys Res 69:4975–4981

    Article  Google Scholar 

  • Sztein AE, Cohen JD, Cooke TJ (2000) Evolutionary patterns in the auxin metabolism of green plants. Int J Plant Sci 161:849–859

    Article  CAS  Google Scholar 

  • Tchizhevsky AL (1940) Cosmobiologie et rythme du milieu extérieur. Acta Medica Scandinavica, Supplement 108:211–226

    Google Scholar 

  • Toriyama H (1991) Individuality in the anomalous bioelectric potential of silk trees prior to earthquake. Science Report of Tokyo Woman’s Christian University 94–95, pp 1067–1077

    Google Scholar 

  • Troshichev OA, Andrezen VG, Vennerstrøm S, Friis-Christensen E (1988) Magnetic activity in the polar cap—a new index. Planet Space Sci 36:1095–1102

    Article  Google Scholar 

  • Troshichev OA, Gorshkov ES, Shapovalov SN, Sokolovskii VV, Ivanov VV, Vorobeitchikov VM (2004) Variations of the gravitational field as a motive power for rhythms of biochemical processes. Adv Space Res 34:1619–1624

    Article  PubMed  CAS  Google Scholar 

  • van Bel AJE, Knoblauch M, Furch ACU, Hafke JB (2011) Questions on phloem biology. 1. Electropotential waves, Ca2+ fluxes and cellular cascades along the propagation pathway. Plant Sci 181:210–218

    Article  PubMed  Google Scholar 

  • Vasil’eva NI (1998) Correlations between terrestrial and space processes within the framework of universal synchronization. Biophysics 43:694–696

    Google Scholar 

  • Vogt KA, Beard KH, Hammann S, O’Hara Palmiotto J, Vogt DJ, Scatena FN, Hecht BP (2002) Indigenous knowledge informing management of tropical forests: the link between rhythms in plant secondary chemistry and lunar cycles. Ambio 31:485–490

    PubMed  Google Scholar 

  • Volkov AG, Haack RA (1995) Insect-induced bioelectrochemical signals in potato plants. Bioelectrochem Bioenerg 37:55–60

    Article  CAS  Google Scholar 

  • Volkov AG, Mwesigwa J (2001) Electrochemistry of soybean: effects of uncouplers, pollutants, and pesticides. J Electroanal Chem 496:153–157

    Article  CAS  Google Scholar 

  • Volkov AG, Ranatunga DRA (2006) Plants as environmental biosensors. Plant Signal Behav 1:105–115

    Article  PubMed  Google Scholar 

  • Volkov AG, Dunkley TC, Labady AJ, Brown CL (2005) Phototropism and electrified interfaces in green plants. Electrochim Acta 50:4241–4247

    Article  CAS  Google Scholar 

  • Wagner E, Lehner L, Normann J, Veit J, Albrechtová J (2006) Hydro-electrochemical integration of the higher plant–Basis for electrogenic flower induction. In: Baluška F, Mancuso S, Volkmann D (eds) Communication in plants. Springer, Berlin, pp 370–389

    Google Scholar 

  • Zurbenko IG, Potrzeba AL (2010) Tidal waves in the atmosphere and their effects. Acta Geophys 58:356–373

    Article  Google Scholar 

  • Zürcher E, Cantiani M-G, Sorbetti Guerri F, Michel D (1998) Tree stem diameters fluctuate with tide. Nature 392:665–666

    Article  Google Scholar 

  • Zweifel R, Item H, Häsler R (2000) Stem radius changes and their relation to stored water in stems of young Norway spruce trees. Tree 15:50–57

    Article  Google Scholar 

Download references

Acknowledgments

I am grateful to Professor E Klingelé for the gift of the Etide program, to Professor M Mikulecký for analysing the Polar Cap (Thule) Index time-course in Fig. 10.6, to Dr Olga V Khabarova for information about solar wind-magnetosphere interactions, to Professor E Zürcher for helpful remarks, and to Mr Timothy Colborn who expertly prepared the Figures. Data relating to water volume fraction (Fig. 10.11) were kindly provided by Dr JP Sparks and Professor MJ Canny.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter W. Barlow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Barlow, P.W. (2012). Moon and Cosmos: Plant Growth and Plant Bioelectricity. In: Volkov, A. (eds) Plant Electrophysiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29110-4_10

Download citation

Publish with us

Policies and ethics