Skip to main content

Morphing Structures in the Venus Flytrap

  • Chapter
  • First Online:
Plant Electrophysiology

Abstract

Venus flytrap is a marvelous plant that intrigued scientists since times of Charles Darwin. This carnivorous plant is capable of very fast movements to catch insects. Mechanism of this movement was debated for a long time. Here, the most recent Hydroelastic Curvature Model is presented. In this model the upper leaf of the Venus flytrap is visualized as a thin, weakly curved elastic shell with principal natural curvatures that depend on the hydrostatic state of the two surface layers of cell, where different hydrostatic pressures are maintained. Unequal expansion of individual layers A and B results in bending of the leaf, and it was described in terms of bending elasticity. The external triggers, either mechanical or electrical, result in the opening of pores connecting these layers; water then rushes from the upper layer to the lower layer, and the bilayer couple quickly changes its curvature from convex to concave and the trap closes. Equations describing this movement were derived and verified with experimental data. The whole hunting cycle from catching the fly through tightening, through digestion, and through reopening the trap was described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Affolter JM, Olivo RF (1975) Action potentials in Venus’s-flytraps: long-term observations following the capture of prey. Am Midl Nat 93:443–445

    Article  Google Scholar 

  • Beilby MJ, Bisson MA, Shepherd VA (2006) Electrophysiology of turgor regulation in charophyte cells. In: Volkov AG (ed) Plant electrophysiology—theory and methods. Springer, Berlin, pp 375–406

    Chapter  Google Scholar 

  • Benolken RM, Jacobson SL (1970) Response properties of a sensory hair excised from Venus’s flytrap. J Gen Physiol 56:64–82

    Article  PubMed  CAS  Google Scholar 

  • Bobji MS (2005) Springing the trap. J Biosci 30:143–146

    Article  PubMed  CAS  Google Scholar 

  • Brown WH (1916) The mechanism of movement and the duration of the effect of stimulation in the leaves of Dionaea. Amer J Bot 3:68–90

    Article  Google Scholar 

  • Brown WH, Sharp LW (1910) The closing response in Dionaea. Bot Gaz 49(1910):290–302

    Article  Google Scholar 

  • Buchen B, Hensel D, Sievers A (1983) Polarity in mechanoreceptor cells of trigger hairs of Dionaea muscipula Ellis. Planta 158:458–468

    Article  Google Scholar 

  • Burdon-Sanderson J (1873) Note on the electrical phenomena, which accompany stimulation of the leaf of Dionaea muscipula Ellis. Phil Proc R Soc Lond 21:495–496

    Article  Google Scholar 

  • Burdon-Sanderson J, Page FJM (1876) On the mechanical effects and on the electrical disturbance consequent on excitation of the leaf of Dionaea muscipula. Philos Proc R Soc Lond 25:411–434

    Article  Google Scholar 

  • Darwin C (1875) Insectivorous plants. Murray, London

    Book  Google Scholar 

  • De Candolle CP (1876) Sur la structure et les mouvements des feuilles du Dionaea muscipula. Arch Sci Phys Nat 55:400–431

    Google Scholar 

  • Detmers FJM, De Groot BL, Mueller EM, Hinton A, Konings IBM, Sze M, Flitsch SL, Grubmueller H, Deen PMT (2006) Quaternary ammonium compounds as water channel blockers: specificity, potency, and site of action. J Biol Chem 281:14207–14214

    Article  PubMed  CAS  Google Scholar 

  • DiPalma JR, McMichael R, DiPalma M (1966) Touch receptor of Venus flytrap, Dionaea muscipula. Science 152:539–540

    Article  PubMed  CAS  Google Scholar 

  • Drever JI (1997) The geochemistry of natural waters: surface and groundwater environments. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Fagerberg WR, Allain D (1991) A quantitative study of tissue dynamics during closure in the traps of Venus’s flytrap Dionaea muscipula Ellis. Amer J Bot 78:647–657

    Article  Google Scholar 

  • Fagerberg WR, Howe DG (1996) A quantitative study of tissue dynamics in Venus’s flytrap Dionaea muscipula (Droseraceae) II. Trap reopening. Amer J Bot 83:836–842

    Article  Google Scholar 

  • Forterre Y, Skothelm JM, Dumals J, Mahadevan L (2005) How the Venus flytrap snaps. Nature 433:421–425

    Article  PubMed  CAS  Google Scholar 

  • Hill BS, Findlay GP (1981) The power of movement in plants: the role of osmotic machines. Q Rev Biophys 14:173–222

    Article  PubMed  CAS  Google Scholar 

  • Hodick D, Sievers A (1988) The action potential of Dionaea muscipula Ellis. Planta 174:8–18

    Article  CAS  Google Scholar 

  • Hodick D, Sievers A (1989) The influence of Ca2+ on the action potential in mesophyll cells of Dionaea muscipula Ellis. Protoplasma 133:83–84

    Article  Google Scholar 

  • Jacobson SL (1965) Receptor response in Venus’s flytrap. J Gen Physiol 49:117–129

    Article  PubMed  CAS  Google Scholar 

  • Jacobson SL (1974) The effect of ionic environment on the response of the sensory hair of Venus’s flytrap. Can J Bot 52:1293–1302

    Article  CAS  Google Scholar 

  • Jaffe MJ (1973) The role of ATP in mechanically stimulated rapid closure of the Venus’s flytrap. Plant Physiol 51:17–18

    Article  PubMed  CAS  Google Scholar 

  • Krol E, Dziubinska H, Stolarz M, Trebacz K (2006) Effects of ion channel inhibitors on cold- and electrically-induced action potentials in Dionaea muscipula. Biol Plantarum 50:411–416

    Article  CAS  Google Scholar 

  • Ksenzhek OS, Volkov AG (1998) Plant energetics. Academic Press, San Diego

    Google Scholar 

  • Lichtner FT, Williams SE (1977) Prey capture and factors controlling trap narrowing in Dionaea (Doseraceae). Am J Bot 64:881–886

    Article  Google Scholar 

  • Lim HWG, Wortis M, Mukhopadhyay R (2002) Stomatocyte-discocyte-echinocyte sequence of the human red blood cell: evidence for the bilayer-couple hypothesis from membrane mechanics. Proc Natl Acad Sci USA 99:16766–16769

    Article  Google Scholar 

  • Lloyd FE (1942) The carnivorous plants. Ronald, New York

    Google Scholar 

  • Markin VS, Albanesi JP (2002) Membrane fusion: stalk model revisited. Biophys J 82:693–712

    Article  PubMed  CAS  Google Scholar 

  • Markin VS, Volkov AG, Jovanov E (2008) Active movements in plants: mechanism of trap closure by Dionaea muscipula Ellis. Plant Signal Behav 3:778–783

    Article  PubMed  Google Scholar 

  • Maurel C (1997) Aquaporins and water permeability of plant membranes. Annu Rev Plant Physiol Plant Mol Biol 48:399–429

    Article  PubMed  CAS  Google Scholar 

  • Maurel C, Chrispeels MJ (2001) Aquaporins. A molecular entry into plant water relations. Plant Physiol 125:135–138

    Article  PubMed  CAS  Google Scholar 

  • McGowan AMR, Washburn AE, Horta LG, Bryant RG, Cox DE, Siochi EJ, Padula SL, Holloway NM (2002) Recent results from NASA’s morphing project, smart structures and materials. In: Proceedings of SPIE—International Society for Optical Engineering (USA), San Diego, CA, vol 4698, doi:10.1117/12.475056

  • Mozingo HN, Klein P, Zeevi Y, Lewis ER (1970) Venus’s flytrap observations by scanning electron microscopy. Amer J Bot 57:593–598

    Article  Google Scholar 

  • Munk H (1876) Die electrischen und Bewegungserscheinungen am Blatte der Dionaeae muscipula. Arch Anat Physiol Wiss Med pp 30–203

    Google Scholar 

  • Nayak TK, Sikdar SK (2007) Time-dependent molecular memory in single voltage-gated sodium channel. J Membr Biol 219:19–36

    Article  PubMed  CAS  Google Scholar 

  • Nelson DL, Cox MM (2005) Lehninger principles of biochemistry, 4th edn. Freeman, New York, pp 58–59

    Google Scholar 

  • Pavlovič A, Demko V, Hudak J (2010) Trap closure and prey retention in Venus flytrap (Dionaea muscipula) temporarily reduces photosynthesis and stimulates respiration. Ann Bot 105:37–44

    Article  PubMed  Google Scholar 

  • Pavlovič A, Slovakova L, Pandolfi C, Mancuso S (2011) On the mechanism underlying photosynthetic limitation upon trigger hair irritation in the carnivorous plant Venus flytrap (Dionaea muscipula Ellis). J Exp Bot 62:1991–2000

    Article  PubMed  Google Scholar 

  • Qi Z, Chi S, Su X, Naruse K, Sokabe M (2005) Activation of a mechanosensitive BK channel by membrane stress created with amphipaths. Mol Membr Biol 22:519–527

    Article  PubMed  CAS  Google Scholar 

  • Rea PA (1983) The dynamics of H+ efflux from the trap lobes of Dionaea muscipula Ellis (Venus’s flytrap). Plant, Cell Environ 6:125–134

    Article  CAS  Google Scholar 

  • Rea PA (1984) Evidence for the H+ -co-transport of D-alanine by the digestive glands of Dionaea muscipula Ellis. Plant, Cell Environ 7:363–366

    CAS  Google Scholar 

  • Savage DF, Stroud RM (2007) Structural basis of aquaporin inhibition by mercury. J Mol Biol 368:607–617

    Article  PubMed  CAS  Google Scholar 

  • Scala J, Iott K, Schwab DW, Semersky FE (1969) Digestive secretion of Dionaea muscipula (Venus’s-Flytrap). Plant Physiol 44:367–371

    Article  PubMed  CAS  Google Scholar 

  • Sheetz MP, Singer SJ (1974) Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. Proc Natl Acad Sci USA 71:4457–4461

    Article  PubMed  CAS  Google Scholar 

  • Shimmen T (2006) Electrophysiology in mechanosensing and wounding response. In: Volkov AG (ed) Plant electrophysiology—theory and methods. Springer, Berlin, pp 319–339

    Chapter  Google Scholar 

  • Sibaoka T (1969) Physiology of rapid movements in higher plants. Annu Rev Plant Physiol 20:165–184

    Article  CAS  Google Scholar 

  • Stuhlman O, Darden E (1950) The action potential obtained from Venus’s flytrap. Science 111:491–492

    Article  PubMed  Google Scholar 

  • Tamiya T, Miyazaki T, Ishikawa H, Iriguchi N, Maki T, Matsumoto JJ, Tsuchiya T (1988) Movement of water in conjunction with plant movement visualized by NMR imaging. J Biochem 104:5–8

    PubMed  CAS  Google Scholar 

  • Tyerman SD, Niemietz CM, Bramley H (2002) Plant aquaporins: multifunctional water and solute channels with expanding roles. Plant, Cell Environ 25:173–194

    Article  CAS  Google Scholar 

  • Volkov AG (ed) (2006a) Plant electrophysiology. Springer, Berlin

    Google Scholar 

  • Volkov AG (2006b) Electrophysiology and phototropism. In: Balushka F, Manusco S, Volkman D (eds) Communication in plants. Neuronal aspects of plant life. Springer, Berlin, pp 351–367

    Google Scholar 

  • Volkov AG, Deamer DW, Tanelian DL, Markin VS (1998) Liquid interfaces in chemistry and biology. Wiley, New York

    Google Scholar 

  • Volkov AG, Adesina T, Jovanov E (2007) Closing of Venus flytrap by electrical stimulation of motor cells. Plant Signal Behav 2:139–145

    Article  PubMed  Google Scholar 

  • Volkov AG, Adesina T, Markin VS, Jovanov E (2008a) Kinetics and mechanism of Dionaea muscipula trap closing. Plant Physiol 146:694–702

    Article  PubMed  CAS  Google Scholar 

  • Volkov AG, Carrell H, Adesina T, Markin VS, Jovanov E (2008b) Plant electrical memory. Plant Signal Behav 3:490–492

    Article  PubMed  Google Scholar 

  • Volkov AG, Coopwood KJ, Markin VS (2008c) Inhibition of the Dionaea muscipula Ellis trap closure by ion and water channels blockers and uncouplers. Plant Sci 175:642–649

    Article  CAS  Google Scholar 

  • Volkov AG, Carrell H, Baldwin A, Markin VS (2009a) Electrical memory in Venus flytrap. Bioelectrochemistry 75:142–147

    Article  PubMed  CAS  Google Scholar 

  • Volkov AG, Carrell H, Markin VS (2009b) Biologically closed electrical circuits in Venus flytrap. Plant Physiol 149:1661–1667

    Article  PubMed  CAS  Google Scholar 

  • Volkov AG, Pinnock MR, Lowe DC, Gay MS, Markin VS (2011) Complete hunting cycle of Dionaea muscipula: Consecutive steps and their electrical properties. J Plant Physiol 168:109–120

    Article  PubMed  CAS  Google Scholar 

  • Williams ME, Mozingo HN (1971) The fine structure of the trigger hair in Venus’s flytrap. Amer J Botany 58:532–539

    Google Scholar 

  • Williams SE, Bennet AB (1982) Leaf closure in the Venus flytrap: an acid growth response. Science 218:1120–1121

    Article  PubMed  CAS  Google Scholar 

  • Yang R, Lenaghan SC, Zhang M, Xia L (2010) A mathematical model on the closing and opening mechanism for Venus flytrap. Plant Signal Behav 5:968–978

    Article  PubMed  Google Scholar 

  • Zonia L, Munnik T (2007) Life under pressure: hydrostatic pressure in cell growth and function. Trends Plant Sci 12:90–97

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the grant from the U.S. Army Research Office.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladislav S. Markin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Markin, V.S., Volkov, A.G. (2012). Morphing Structures in the Venus Flytrap. In: Volkov, A. (eds) Plant Electrophysiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29110-4_1

Download citation

Publish with us

Policies and ethics