Skip to main content

Microgravity

  • Chapter
  • First Online:
Arid Lands Water Evaluation and Management

Part of the book series: Environmental Science and Engineering ((ENVSCIENCE))

  • 3298 Accesses

Abstract

Gravity survey data can provide quantitative information on changes in the mass of water within an aquifer, which has obvious water resources value. The technique is particularly useful for unconfined aquifers that experience changes in water levels caused by pumping or recharge (natural or artificial). Unconfined alluvial aquifers are important water sources in many arid regions, so gravity surveys have applications for water-resources investigations in these regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson, O. B., Seneviratne, S. I., Hinderer, J., & Viterbo, P. (2005). GRACE-derived terrestrial water storage depletion associated with the 2003 European heat wave. Geophysical Research Letters, 32, L18405, 4.

    Google Scholar 

  • Becker, M. W. (2006). Potential for satellite remote sensing of ground water. Ground Water, 44, 306–318.

    Article  Google Scholar 

  • Burger, H. R., Sheehan, A. F., & Jones, G. H. (2006). Introduction to applied geophysics: Exploring the shallow subsurface. New York: W. W. Norton.

    Google Scholar 

  • Cesanelli, A., & Guarracino, L. (2011). Estimation of regional evapotranspiration in the extended Salado Basin (Argentina) from satellite gravity measurements. Hydrogeology Journal, 19, 629–639.

    Article  Google Scholar 

  • Chapman, D. S., Sahm, E., & Gettings, P. (2008). Monitoring aquifer recharge using repeated high-precision gravity measurements: A pilot study in South Weber, Utah. Geophysics, 73(6), WA83–WA93.

    Google Scholar 

  • Davis, K., Li, Y., Batzle, M., & Raynolds, B. (2005). Time-lapse gravity monitoring of an aquifer storage recovery project in Leyden, Colorado. Golden: Colorado School of Mines, Center for Gravity, Electrical & Magnetic Studies.

    Google Scholar 

  • Davis, K., Li, Y., & Batzle, M. (2008). Time-lapse gravity monitoring: A systematic 4D approach with application to aquifer storage and recovery. Geophysics, 73(6), WA61–WA69.

    Google Scholar 

  • Ek, M. B., Mitchell, K. E., Lin, Y., Rogers, E., Grunmann, P., Korev, V., et al. (2003). Implementation of the Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. Journal of Geophysical Research, 108, 8861. doi:10.1029/2002JD003296.

  • Günter, A., Schmidt, R., & Döll, P. (2007). Supporting large-scale hydrogeological monitoring and modeling by time-variable gravity data. Hydrogeology Journal, 15, 167–170.

    Article  Google Scholar 

  • Howle, J. F., Phillips, S. P., & Ikehara, M. E. (2002). Estimating water-table change using microgravity surveys during an ASR program in Lancaster, California. In P. Dillon (Ed.), Management of aquifer recharge for sustainability (pp. 269–272). Lisse: Swets & Zeitlinger.

    Google Scholar 

  • Maliva, R. G., Coulibaly, K., Guo, W., & Missimer, T. M. (2011). Confined aquifer loading: Implications for groundwater management. Ground Water, 49(3), 302–304.

    Google Scholar 

  • Milson, J. (2003). Field geophysics (3rd ed.). Chichester: Wiley.

    Google Scholar 

  • NASA. (2003). Studying the earth’s gravity from space: The Gravity Recovery and Climate Experiment (GRACE). NASA Facts. The Earth System Sciences Pathfinder Series, FS-2002-1-029-GSFC (rev. December 2003), p. 6.

    Google Scholar 

  • Pool, D. R. (2008). The utility of gravity and water-level monitoring at alluvial aquifer wells in southern Arizona. Geophysics, 73(6), WA49–WA59. doi:10.1190/1.2980395.

  • Pool, D. R., & Schmidt, W. (1997). Measurement of ground-water storage change and specific yields using the temporal-gravity method near Rillito Creek. Tucson, Arizona. U.S. Geological Survey Water Resources Investigations Report 97-4125.

    Google Scholar 

  • Rodell, M., Famiglietti, J. S., Chen, J., Seneviratne, S. I., Viterbo, P., Hall, S., & Wilson, C. R. (2004). Basin scale estimates of evapotranspiration using GRACE and other observations. Geophysical Research Letters, 31, L20504, 4. doi:10.1029/2004gl020873.

  • Rodell, M., Chen, J., Kato, H., Famiglietti, J.-S., Nigro, J., & Wilson, C. R. (2007). Estimating groundwater storage changes in the Mississippi River Basin (USA) using GRACE. Hydrogeology Journal, 15, 159–166.

    Article  Google Scholar 

  • Rodell, M., Velicogna, I., & Framigletti, J. S. (2009). Satellite-based estimates of groundwater depletion in India. Nature, 460, 999–1002.

    Article  Google Scholar 

  • Strassberg, G., Scanlon, B.R., and Rodell, M., 2007, Comparison of seasonal terrestrial water storage variations from GRACE with ground-water level measurements from the High Plains Aquifer (USA). Geophysical Research Letters, 34, L14402, 5. doi:10.1029/2007/GL030139.

  • Strassberg, G., Scanlon, B. R., & Chambers, D. (2009). Evaluation of groundwater storage monitoring with the GRACE satellite: Case study of the High Plains aquifer, central United States. Water Resources Research, 45, W05410, 10. doi:10.1029/2008WR006892.

  • Swenson, S., & Wahr, J. (2002). Methods for inferring regional surface-mass anomalies from gravity recovery and climate experiment (GRACE) measurements of time-variable gravity. Journal of Geophysical Research, 113, B08410. doi:10.1029/2001JB000576.

  • Telford, W. M., Geldart, L. P., Sheriff, R. E., & Keys, D. A. (1976). Applied geophysics. Cambridge: Cambridge University Press.

    Google Scholar 

  • Tiwari, V. M., Wahr, J., & Swenson, S. (2009). Dwindling groundwater resources in northern India, from satellite gravity observations. Geophysical Research Letters. doi:10.1029/2009GL039401.

  • Turcotte D. L., & Schubert, G. (1982). Geodynamics: Applications of continuum physics to geological problems. New York: Wiley.

    Google Scholar 

  • Wahr, J., Swenson, S., Zlotnicki, V., & Velicogna, I. (2004). Time-variable gravity from GRACE: First results. Geophysical Research Letters, 31, L11501. doi:10.1029/2004GL019779.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Maliva, R., Missimer, T. (2012). Microgravity. In: Arid Lands Water Evaluation and Management. Environmental Science and Engineering(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29104-3_14

Download citation

Publish with us

Policies and ethics