Skip to main content

Wadi Recharge Evaluation

  • Chapter
  • First Online:
Arid Lands Water Evaluation and Management

Part of the book series: Environmental Science and Engineering ((ENVSCIENCE))

  • 3332 Accesses

Abstract

Recharge in arid and semiarid regions is very low because of the paucity of precipitation. The distribution of recharge is both temporally and spatially highly heterogeneous. Most, if not all, of the water that infiltrates soils is subsequently loss to evapotranspiration. Recharge typically occurs predominantly during storm events and primarily occurs in areas in which runoff is concentrated, such as in ephemeral stream channels (i.e., wadis).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdulrazzak, M. J., & Sorman, A. U. (1994). Transmission losses from ephemeral stream in arid regions. Journal of Irrigation and Drainage Engineering, 120(3), 669–675.

    Article  Google Scholar 

  • Al-ahmadi, M. E., & El-Fiky, A. A. (2009). Hydrogeochemical evaluation of shallow alluvial aquifer of Wadi Marwani, Western Saudi Arabia. Journal of King Saud University (Science), 21, 179–190.

    Article  Google Scholar 

  • Al-Shaibani, A. M. (2008). Hydrogeology and hydrochemistry of a shallow alluvial aquifer, western Saudi Arabia. Hydrogeology Journal, 16, 155–165.

    Article  Google Scholar 

  • Al-Weshah, R. A. (2002). Rainfall-runoff analysis and modeling in wadi systems. In H. Wheater, & R. A. Al-Weshah (Eds.), Hydrology of wadi systems: IHP-V, technical documents in hydrology (Vol. 55, pp. 87–111). Paris: UNESCO.

    Google Scholar 

  • Ben-Zvi, A., & Shentsis, S. I. (2000). Runoff events in the Negev, Israel, In M. A. Hassan, O. Slaymaker, & S. M. Berkowicz (Eds.), The hydrology-geomorphology interface: Rainfall, floods, sedimentation, land use (pp. 53–71). Wallingford: International Association of Hydrological Sciences Publication No. 261.

    Google Scholar 

  • Besbes, M., Delhomme, J. P., & de Marsily, G. (1978). Estimating recharge from ephemeral streams in arid regions: A case study a Kairouan, Tunisia. Water Resources Research, 14, 281–290.

    Article  Google Scholar 

  • Bras, R. L. (1989). Hydrology. An introduction to hydrologic science. Reading: Addison Wesley.

    Google Scholar 

  • Cataldo, J., & Pierce, R. J. (2005). An analysis of transmission losses in ephemeral streams: A case study in Walnut Gulch Experimental Watershed. Tombstone: A Report to the National Center for Housing and the Environment

    Google Scholar 

  • Cataldo, J. C., Behr, C., Montalto, F. A., & Pierce, R. J. (2010). Prediction of transmission losses in ephemeral streams, western U.S.A. The Open Hydrology Journal, 4, 19–34.

    Article  Google Scholar 

  • Chow, V.T., Maidment, D., & Mays, L.W. (1988). Applied Hydrology. New York: McGraw Hill.

    Google Scholar 

  • Constantz, J., & Stonestrom, D. A. (2003). Heat as a tracer of water movement near streams. In D. A. Stonestrom, & J. Constantz (Eds.), Heat as a tool for studying the movement of groundwater near streams (pp. 1–6). U.S. Geological Survey Circular 1260.

    Google Scholar 

  • Constantz, J., Stonestrom, D. A., Stewart, A. E., Niswonger, R., & Smith, T. R. (2001). Analysis of streambed temperatures in ephemeral streams to determine streamflow frequency and duration. Water Resources Research, 37, 317–328.

    Article  Google Scholar 

  • Cunge, J. A. (1969). On the subject of flood propogation method. Journal of Hydrologic Research, 7(2), 205–230.

    Google Scholar 

  • Flint, A. L., Flint, L. E., Kwicklis, E. M., Fabryka-Martin, J. T., & Bodvarsson, G. S. (2002). Estimating recharge at Yucca Mountain, Nevada, USA, comparison of methods. Hydrogeology Journal, 10, 180−204.

    Article  Google Scholar 

  • Flint, L. E., & Flint, A. L. (1995) Shallow infiltration processes at Yucca Mountain, Nevada—neutron logging data, 1984–1993. U.S. Geological Survey Water-Resources Investigations Report 95-4035.

    Google Scholar 

  • Goodrich, D. C., Williams, D. G., Unkrich, C. L., Hogan, J. F., Scott, R. L., Hultine, K. R., et al. (2004). Comparison of methods to estimate channel recharge, Walnut Gulch, San Pedro River Basin. In F. M. Phillips, J. F. Hogan, & B. Scanlon (Eds.), Recharge and vadose zone processes: Alluvial basins of the Southwestern United States, Water science and application (Vol. 9, pp. 77–99). Washingston, D.C.: American Geophysical Union.

    Google Scholar 

  • Hammouri, N., & El-Naqa, A. (2007). Hydrological modeling of ungauged wadis in arid environments using GIS: A case study of Wadi Madoneh in Jordan. Revista Mexicana de Ciencias GeolÏŒgicas, 24(2), 185–196.

    Google Scholar 

  • Hedman, E. R., & Osterkamp, W. R. (1982). Streamfow characteristics related to channel geometry of streams in the Western United States. U.S. Geological Survey Water-Supply Paper 2193.

    Google Scholar 

  • Izbicki, J. A., Johnson, R. U., Kulongoski, J., & Predmore, S. (2007). Ground-water recharge from small intermittent streams in the western Mojave Desert, California. In D. A. Stonestrom, J. Constantz, T. P. A.Ferré, & S. A. Leake (Eds.), Ground-water recharge in the arid and semiarid Southwestern United States. (pp. 157–184). U.S. Geological Survey Professional Paper 1703.

    Google Scholar 

  • Jordan, P. R. (1977). Streamflow transmission losses in western Kansas. Journal of Hydraulic Division, ASCE, 103, 905–919.

    Google Scholar 

  • Lane, L. J. (1982). Distributed model for small semiarid watersheds. Journal of the Hydraulics Division, American Society of Civil Engineers, 108, 1114–1131.

    Google Scholar 

  • Lane, L. J., Diskin, M. H., & Renard, K. G. (1971). Input-output relationship for an ephemeral stream channel system. Journal of Hydrology, 13, 22–40.

    Article  Google Scholar 

  • Lange, J., & Leibundgut, C. (2000). Non-calibrated arid zone rainfall-runoff modeling. In M. A. Hassan, O. Slaymaker, & S. M. Berkowicz (Eds.), The hydrology-geomorphology interface: Rainfall, floods, sedimentation, land use (pp. 45–52). Wallingford: International Association of Hydrological Sciences Publication No. 261.

    Google Scholar 

  • Lange, J., Leibundgut, C., Greenbaum, N., & Schick, A. P. (1999). A noncalibrated rainfall-runoff model for large, arid catchmemts. Water Resources Research, 35(7), 2161–2172.

    Article  Google Scholar 

  • Lapham, W. W. (1989). Use of temperature profiles beneath streams to determine rates of vertical ground-water flow and vertical hydraulic conductivity. U.S. Geological Survey Water-Supply Paper 2337.

    Google Scholar 

  • Leavesley, G. H., Lichty, R. W., Troutman, B. M., & Saindon, L. G. (1983). Precipitation-runoff modeling system. User’s manual. U.S. Geological Survey Water-Resources Investigations Report 83-4238.

    Google Scholar 

  • Menking, K. M., Syed, K. H., Anderson, R. Y., Shafike, N. G., & Arnold, J. G. (2003). Model estimates of runoff in the closed, semiarid Estancia Basin, Central New Mexico, USA. Hydrological Sciences, 48(6), 953–970.

    Article  Google Scholar 

  • Moore, S. J. (2007). Streamflow, infiltration, and recharge in Arroyo Hondo, New Mexico. In D. A. Stonestrom, J. Constantz, T. P. A. Ferré, & S. A. Leake (Eds.), Ground-water recharge in the arid and semiarid southwestern United States (pp. 137–155) .U.S. Geological Survey Professional Paper 1703.

    Google Scholar 

  • Murphey, J. B., Wallace, D. E., & Lane, L. J. (1977). Geomorphic parameters predict hydrograph characteristics in the Southwest. Water Resources Bulletin, 12, 25–38.

    Article  Google Scholar 

  • Natural Resources Conservation Service. (1993). Chapter 4. Storm rain fall depth, Part 630, Hydrology, National Engineering Handbook, U.S. Department of Agriculture, Natural Resources Conservations Services.

    Google Scholar 

  • Natural Resources Conservation Service. (2004a). Chapter 10. Estimation of direct runoff from storm rainfall, Part 630, Hydrology, National Engineering Handbook, U.S. Department of Agriculture, Natural Resources Conservations Services.

    Google Scholar 

  • Natural Resources Conservation Service. (2004b). Chapter 9. Hydrologic soil-cover complexes, Part 630, Hydrology, National Engineering Handbook, U.S. Department of Agriculture, Natural Resources Conservations Services.

    Google Scholar 

  • Natural Resources Conservation Service. (2007). Chapter 16. Hydrographs, Part 630, Hydrology, National Engineering Handbook, U.S. Department of Agriculture, Natural Resources Conservations Services.

    Google Scholar 

  • Neitsch, S. L., Arnold, J. G., Kiniry, J. R., & Williams, J. R. (2005) Soil water assessment tool theoretical documentation, version 2005. U.S. Department of Agriculture, Agricultural research Center.

    Google Scholar 

  • Newman, B. D., Vivoni, E. R., & Groffman, A. R. (2006). Surface water—groundwater interactions in semiarid drainages of the American southwest. Hydrological Process, 20, 3371–3394.

    Article  Google Scholar 

  • Onder, H., & Abdulrazzak, M. J. (1993). Analysis of salt water intrusion in coastal aquifers. Journal King Addulaziz University, Meteorology, Environment, and Arid Land Agricultural Sciences, 4, 43–67.

    Google Scholar 

  • Osterkamp, W. R., Lane, L. J., & Savard, C. S. (1994). Recharge estimates using a geomorphic/distributed parameter simulation approach, Amargosa River Basin. Water Resources Bulletin, 30(3), 493–507.

    Article  Google Scholar 

  • Osterkamp, W. R., Lane, L. C., & Menges, C. M. (1995). Techniques of ground-water recharge estimates in arid/semi-arid areas, with examples from Abu Dhabi (Vol. 31, pp. 349–369).

    Google Scholar 

  • Pilgrim, D. H., Chapman, T. E., & Doran, D. G. (1988). Problems of rainfall-runoff modeling in arid and semiarid regions. Hydrological Sciences Journal, 33(4), 379–400.

    Article  Google Scholar 

  • Ramírez, J. A. (2000). Prediction and modeling of flood hydrology and hydraulics. In E. E. Wohl, (Ed.), Inland flood hazards: Human, riparian and aquatic communities (pp. 293–333). Cambridge: Cambridge University Press.

    Google Scholar 

  • Scanlon, B. R., Keese, K. E., Flint, A. L., Flint, L. E., Gaye, C. B., Edmunds, W. M., et al. (2006). Global synthesis of groundwater recharge in semiarid and arid regions. Hydrological Processes, 20, 3335–3379.

    Article  Google Scholar 

  • Åžen, Z. (2008). Wadi hydrology. Boca Raton: CRC Press.

    Google Scholar 

  • Sharma, K. D., & Murthy, J. S. R. (1994a). Estimating transmission losses in an arid region. Journal of Arid Environments, 26, 209–219.

    Article  Google Scholar 

  • Sharma, K. D., & Murthy, J. S. R. (1994b). Estimating transmission losses in an arid region—a realistic approach. Journal of Arid Environments, 27, 107–112.

    Article  Google Scholar 

  • Shentsis, I., Meirovich, L., Ben-Zvu, A., & Rosenthal, E. (1999). Assessment of transmission losses and groundwater recharge from runoff events in a wadi under shortage of data on lateral inflow, Negev, Israel. Hydrological Processes, 13, 1649–1663.

    Article  Google Scholar 

  • Snyder, F. F. (1938). Synthetic unit hydrographs. Transactions American Geophysical Union, 19, 447–454.

    Google Scholar 

  • Soliman, M. M. (2010). Engineering hydrology of arid and semi-arid regions (p. 395).: Boca Raton: CRC Press/Taylor & Francis Group.

    Book  Google Scholar 

  • Sorman, A. U., & Abdulrazzak, M. J. (1993). Infiltration-recharge through wadi beds in arid regions. Hydrological Sciences—Journal des Sciences Hydrologiques, 38(3), 173–186.

    Article  Google Scholar 

  • Stallman, R. W. (1963). Computation of ground-water velocity from temperature data. In R. Bentall, (Ed.), Methods of collecting and interpreting ground-water data. (pp. 36–45). U.S. Geological Survey Water-Supply Paper 1544.

    Google Scholar 

  • Stephens, D. B. (1996). Vadose zone hydrology. Boca Raton: CRC Press.

    Google Scholar 

  • Stewart-Deaker, A. E., Stonestrom, D. A., & Moore, S. J. (2007). Streamflow, infiltration, and ground-water recharge at Abo Arroyo, New Mexico, In D. A., Stonestrom, J., Constantz, T. P. A., Ferré, & S. A., Leake (Eds.), Ground-water recharge in the arid and semiarid southwestern United States (pp. 83–105). U.S. Geological Survey Professional Paper 1703.

    Google Scholar 

  • Stonestrom, D. A., Prudic, D. E., Walvoord, M. A., Abraham, J. D., Stewart-Deaker, A. E., Glancy, P. A., et al. (2007). Focused ground-water recharge in the Amargosa Desert Basin. In D. A. Stonestrom, J. Constantz, T. P. A. Ferré, & S. A. Leake (Eds.), Ground-water recharge in the arid and semiarid Southwestern United States. (pp. 107–136). U.S. Geological Survey Professional Paper 1703.

    Google Scholar 

  • Suzuki, S. (1960). Percolation measurements based on heat flow through soil with special reference to paddy field. Journal of Geophysical Research, 65, 2883–2885.

    Article  Google Scholar 

  • U.S. Army of Corps of Engineers. (2009). Hydrologic model system HEC-HMS, User’s manual, version 3.4, August 2009. Davis: U.S. Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center

    Google Scholar 

  • Walters, M. O. (1990). Transmission losses in arid regions. Journal of Hydraulic Engineering, 116, 129–138.

    Article  Google Scholar 

  • Wheater, H. S. (2002). Hydrological processes in arid and semi arid area, In H. Wheater, & R. A. Al-Weshah (Eds.), Hydrology of wadi systems, IHP-V, Technical documents in hydrology (Vol. 55, pp. 5–22). Paris: UNESCO.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Maliva, R., Missimer, T. (2012). Wadi Recharge Evaluation. In: Arid Lands Water Evaluation and Management. Environmental Science and Engineering(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29104-3_13

Download citation

Publish with us

Policies and ethics