Advertisement

Improved Efficiency of Chosen Ciphertext Secure Encryption from Factoring

  • Xianhui Lu
  • Bao Li
  • Qixiang Mei
  • Yamin Liu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7232)

Abstract

We propose a new variant of HK09 (proposed by Hofheinz and Kiltz in Eurocrypt 2009) which improves the decapsulation efficiency at the price of a slightly increased key size. Compared with the original HK09 scheme the decapsulation efficiency is improved by 32% (instantiated over the quadratic residuosity group) or 57.6% (instantiated over the semi-smooth subgroup) and the encapsulation efficiency remains the same.

Keywords

public key encryption chosen ciphertext security factoring 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blum, L., Blum, M., Shub, M.: A simple unpredictable pseudo-random number generator. SIAM J. Comput. 15(2), 364–383 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Blum, M., Goldwasser, S.: An Efficient Probabilistic Public-Key Encryption Scheme Which Hides All Partial Information. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 289–302. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  3. 3.
    Canetti, R., Halevi, S., Katz, J.: Chosen-Ciphertext Security from Identity-Based Encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 207–222. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Cash, D., Kiltz, E., Shoup, V.: The Twin Diffie-Hellman Problem and Applications. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 127–145. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Cramer, R., Shoup, V.: A Practical Public Key Cryptosystem Provably Secure against Adaptive Chosen Ciphertext Attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)Google Scholar
  6. 6.
    Cramer, R., Shoup, V.: Universal Hash Proofs and a Paradigm for Adaptive Chosen Ciphertext Secure Public-Key Encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33, 167–226 (2004), http://dl.acm.org/citation.cfm?id=953065.964243 MathSciNetCrossRefGoogle Scholar
  8. 8.
    Hanaoka, G., Kurosawa, K.: Efficient Chosen Ciphertext Secure Public Key Encryption under the Computational Diffie-Hellman Assumption. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 308–325. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Haralambiev, K., Jager, T., Kiltz, E., Shoup, V.: Simple and Efficient Public-Key Encryption from Computational Diffie-Hellman in the Standard Model. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 1–18. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Hofheinz, D., Kiltz, E.: Practical Chosen Ciphertext Secure Encryption from Factoring. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 313–332. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Kiltz, E.: Chosen-Ciphertext Secure Key-Encapsulation Based on Gap Hashed Diffie-Hellman. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 282–297. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Kurosawa, K., Desmedt, Y.: A New Paradigm of Hybrid Encryption Scheme. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer, Heidelberg (2004)Google Scholar
  13. 13.
    Lu, X., Li, B., Mei, Q., Liu, Y.: Improved tradeoff between encapsulation and decapsulation of hk09. In: Inscrypt 2011 (2011) (to appear)Google Scholar
  14. 14.
    Mei, Q., Li, B., Lu, X., Jia, D.: Chosen Ciphertext Secure Encryption under Factoring Assumption Revisited. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 210–227. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext attacks. In: Proceedings of the Twenty-Second Annual ACM Symposium on Theory of Computing, STOC 1990, pp. 427–437. ACM, New York (1990)CrossRefGoogle Scholar
  16. 16.
    Rackoff, C., Simon, D.R.: Non-interactive Zero-Knowledge Proof of Knowledge and Chosen Ciphertext Attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 433–444. Springer, Heidelberg (1992)Google Scholar
  17. 17.
    Wee, H.: Efficient Chosen-Ciphertext Security via Extractable Hash Proofs. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 314–332. Springer, Heidelberg (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Xianhui Lu
    • 1
  • Bao Li
    • 1
  • Qixiang Mei
    • 2
  • Yamin Liu
    • 1
  1. 1.State Key Laboratory of Information SecurityGraduate University of Chinese Academy of SciencesBeijingChina
  2. 2.School of InformationGuangdong Ocean UniversityZhanjiangChina

Personalised recommendations