Advertisement

Linear Cryptanalysis of Reduced-Round ICEBERG

  • Yue Sun
  • Meiqin Wang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7232)

Abstract

ICEBERG is proposed by Standaert et al. in FSE 2004 for reconfigurable hardware implementations. ICEBERG is a fast involutional SPN block cipher and all its components are involutional and allow very efficient combinations of encryption/decryption. ICEBERG uses 64-bit block size and 128-bit key and the round number is 16. In this paper, we firstly find the best linear approximation of 6-round ICEBERG. We find that 2122 of ICEBERG keys are weak for linear cryptanalysis, and the linear deviation can be strengthened more heavily than the linear characteristic by the multi-path effect(Linear Hull). And we discover a 6-round linear hull consisting of 7 linear characteristics with a linear deviation of 2− 29.99. Then we give a linear attack against 7-round ICEBERG for the weak keys.

Keywords

Linear Cryptanalysis ICEBERG Linear Hull Weak Keys 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bogdanov, A.A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Lim, C.H., Korkishko, T.: mCrypton – A Lightweight Block Cipher for Security of Low-Cost RFID Tags and Sensors. In: Song, J.-S., Kwon, T., Yung, M. (eds.) WISA 2005. LNCS, vol. 3786, pp. 243–258. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Hong, D., Sung, J., Hong, S.H., Lim, J.-I., Lee, S.-J., Koo, B.-S., Lee, C.-H., Chang, D., Lee, J., Jeong, K., Kim, H., Kim, J.-S., Chee, S.: HIGHT: A New Block Cipher Suitable for Low-Resource Device. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 46–59. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Standaert, F.-X., Piret, G., Gershenfeld, N., Quisquater, J.-J.: SEA: A Scalable Encryption Algorithm for Small Embedded Applications. In: Domingo-Ferrer, J., Posegga, J., Schreckling, D. (eds.) CARDIS 2006. LNCS, vol. 3928, pp. 222–236. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — A Family of Small and Efficient Hardware-Oriented Block Ciphers. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Joan, D., Vincent, R.: The Design of Rijndael: AES - The Advanced Encryption Standard. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  7. 7.
    Standaert, F.-X., Piret, G., Rouvroy, G., Quisquater, J.-J., Legat, J.-D.: ICEBERG: An Involutional Cipher Efficient for Block Encryption in Reconfigurable Hardware. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 279–299. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)Google Scholar
  9. 9.
    Huiju, C., Howard, M.H., Cheng, W.: PUFFIN: A Novel Compact Block Cipher Targeted to Embedded Digital Systems. Digital System Design Architectures (DSD 2008), pp. 383–390 (2008)Google Scholar
  10. 10.
    Nyberg, K.: Linear Approximation of Block Ciphers. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 439–444. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  11. 11.
    Murphy, S.: The Effectiveness of the Linear Hull Effect. Technical Report, RHUL-MA-2009-19 (2009), http://www.isg.rhul.ac.uk/ssean/LinearHull.pdf
  12. 12.
    Selçuk, A.A., Biçak, A.: On Probability of Success in Linear and Differential Cryptanalysis. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 174–185. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Yue Sun
    • 1
  • Meiqin Wang
    • 1
  1. 1.School of MathematicsShandong UniversityJinanChina

Personalised recommendations