Lightweight Integrity for XOR Network Coding in Wireless Sensor Networks

  • Kazuya Izawa
  • Atsuko Miyaji
  • Kazumasa Omote
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7232)


In INFOCOM 2009, Yu, Wei, Ramkumar and Guan have proposed the novel mechanism (called Yu’s scheme), in which a forwarder can filter polluted messages before spreading the pollution in the XOR network coding systems. In order to perform such filtering, two or more message authentication codes (MACs) are used for this scheme. However, Yu’s scheme has a problem that the number of MACs increases at every coding point, since it cannot operate MACs with the XOR network coding. This means that the MAC of Yu’s scheme does not have homomorphic property.

In this paper, we propose the first symmetric-key-based scheme not only to filter polluted messages but also to operate MACs with the XOR network coding on a forwarder. The XOR network coding of MACs produces improvement which does not increase the number of MACs at a coding point. Our scheme uses the UHFs-based MAC with a homomorphic property to hold homomorphic MAC, and hence it can aggregate MACs in our XOR network coding systems. We emphasize that a forwarder cannot straightforward filter polluted messages even if our scheme uses the UHFs-based MACs.


Wireless Sensor Network Source Node Network Code Message Authentication Code Downstream Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahlswede, R., Cai, N., Li, S.-Y.R., Yeung, R.W.: Network information flow. IEEE Transactions on Information Theory 46(4), 1204–1216 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Agrawal, S., Boneh, D.: Homomorphic MACs: MAC-Based Integrity for Network Coding. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 292–305. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Apavatjrut, A., Znaidi, W., Fraboulet, A., Goursaud, C., Lauradoux, C., Minier, M.: Energy Friendly Integrity for Network Coding in Wireless Sensor Networks. In: NSS 2010, pp. 223–230 (2010)Google Scholar
  4. 4.
    Bowers, K.D., Juels, A., Oprea, A.: HAIL: a high-availability and integrity layer for cloud storage. In: ACM Conference on Computer and Communications Security 2009, pp. 187–198 (2009)Google Scholar
  5. 5.
    Carter, L., Wegman, M.N.: Universal Classes of Hash Functions. J. Comput. Syst. Sci. 18(2), 143–154 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Dong, Q., Wu, J., Hu, W., Crowcroft, J.: Practical network coding in wireless networks. In: MOBICOM 2007, pp. 306–309 (2007)Google Scholar
  7. 7.
    Eschenauer, L., Gligor, V.D.: A key-management scheme for distributed sensor networks. In: ACM Conference on Computer and Communications Security 2002, pp. 41–47 (2002)Google Scholar
  8. 8.
    Gkantsidis, C., Rodriguez, P.: Cooperative Security for Network Coding File Distribution. In: INFOCOM 2006 (2006)Google Scholar
  9. 9.
    Handschuh, H., Preneel, B.: Key-Recovery Attacks on Universal Hash Function Based MAC Algorithms. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 144–161. Springer, Heidelberg (2008)Google Scholar
  10. 10.
    Katti, S., Rahul, H., Hu, W., Katabi, D., Medard, M., Crowcroft, J.: XORs in the air: practical wireless network coding. In: SIGCOMM 2006, pp. 243–254 (2006)Google Scholar
  11. 11.
    Kuo, F.-C., Tan, K., Li, X., Zhang, J., Fu, X.: XOR Rescue: Exploiting Network Coding in Lossy Wireless Networks. In: SECON 2009, pp. 1–9 (2009)Google Scholar
  12. 12.
    Li, Y., Yao, H., Chen, M., Jaggi, S., Rosen, A.: RIPPLE Authentication for Network Coding. In: INFOCOM 2010, pp. 2258–2266 (2010)Google Scholar
  13. 13.
    Nage, T., Yu, F.R., St-Hilaire, M.: Adaptive Control of Packet Overhead in XOR Network Coding. In: ICC 2010, pp. 1–5 (2010)Google Scholar
  14. 14.
    Perrig, A., Canetti, R., Tygar, J.D., Song, D.X.: Efficient Authentication and Signing of Multicast Streams over Lossy Channels. In: IEEE Symposium on Security and Privacy, pp. 56–73 (2000)Google Scholar
  15. 15.
    Shoup, V.: On Fast and Provably Secure Message Authentication Based on Universal Hashing. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 313–328. Springer, Heidelberg (1996)Google Scholar
  16. 16.
    Yu, Z., Wei, Y., Ramkumar, B., Guan, Y.: An Efficient Scheme for Securing XOR Network Coding against Pollution Attacks. In: INFOCOM 2009, pp. 406–414 (2009)Google Scholar
  17. 17.
    Zhang, S., Liew, S.C., Lam, P.P.: Hot topic: physical-layer network coding. In: MOBICOM, pp. 358–365 (2006)Google Scholar
  18. 18.
    Zhang, Z., Lv, T., Su, X., Gao, H.: Dual XOR in the Air: A Network Coding Based Retransmission Scheme for Wireless Broadcasting. In: ICC 2011, pp. 1–6 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Kazuya Izawa
    • 1
  • Atsuko Miyaji
    • 1
  • Kazumasa Omote
    • 1
  1. 1.Japan Advanced Institute of Science and Technology (JAIST)Japan

Personalised recommendations