Advertisement

On the Equivalence of Two Definitions of Visual Cryptography Scheme

  • Teng Guo
  • Feng Liu
  • ChuanKun Wu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7232)

Abstract

A visual cryptography scheme (VCS) is a secret sharing method, for which the secret can be decoded by human eyes without needing any cryptography knowledge nor any computation. To the best of our knowledge, there are two different definitions of basis matrix (k,n)-VCS. The definition of unconditional secure basis matrix (k,n)-VCS is the generally accepted one, and has been widely used since the pioneer work of Naor and Shamir in 1994, while the definition of stacking secure basis matrix (k,n)-VCS is relatively new, and has been used in many studies in recent years. Our study shows that the above two definitions are actually equivalent. Furthermore, we generalize the equivalence relation to general access structure basis matrix VCS and general access structure size invariant VCS. But the equivalence relation does not hold for non-basis matrix (k,n)-VCS.

Keywords

Visual cryptography Secret sharing Unconditional secure Stacking secure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ateniese, G., Blundo, C., De Santis, A., Stinson, D.R.: Visual cryptography for general access structures. Information and Computation 129, 86–106 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Blundo, C., Cimato, S., De Santis, A.: Visual cryptography schemes with optimal pixel expansion. Theoretical Computer Science 369, 169–182 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Blundo, C., D’Arco, P., De Santis, A., Stinson, D.R.: Contrast optimal threshold visual cryptography schemes. SIAM Journal on Discrete Mathematics 16(2), 224–261 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Blundo, C., De Santis, A., Stinson, D.R.: On the contrast in visual cryptography schemes. Journal of Cryptology 12(4), 261–289 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Bose, M., Mukerjee, R.: Optimal (2, n) visual cryptographic schemes. Designs, Codes and Cryptography 40, 255–267 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Bose, M., Mukerjee, R.: Optimal (k, n) visual cryptographic schemes for general k. Designs, Codes and Cryptography 55, 19–35 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Cimato, S., De Prisco, R., De Santis, A.: Colored visual cryptography without color darkening. Theoretical Computer Science 374, 261–276 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Ciou, C.B., Yang, C.N.: Image secret sharing method with two-decoding-options: Lossless recovery and previewing capability. Image and Vision Computing 28(12), 1600–1610 (2010)CrossRefGoogle Scholar
  9. 9.
    Droste, S.: New Results on Visual Cryptography. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 401–415. Springer, Heidelberg (1996)Google Scholar
  10. 10.
    Hofmeister, T., Krause, M., Simon, H.U.: Contrast-optimal k out of n secret sharing schemes in visual cryptography. Theoretical Computer Science 240(2), 471–485 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Horng, G.B., Chen, T.H., Tsai, D.S.: Cheating in visual cryptography. Designs, Codes and Cryptography 38, 219–236 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Hou, Y.C., Xu, C.S.: A probability-based optimization model for sharing multiple secret images without pixel expansion (in chinese). Journal of Information, Technology and Society 2, 19–38 (2003)Google Scholar
  13. 13.
    Hsu, C.S., Tu, S.F., Hou, Y.C.: An Optimization Model for Visual Cryptography Schemes with Unexpanded Shares. In: Esposito, F., Raś, Z.W., Malerba, D., Semeraro, G. (eds.) ISMIS 2006. LNCS (LNAI), vol. 4203, pp. 58–67. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Hu, C.M., Tzeng, W.G.: Cheating prevention in visual cryptography. IEEE Transactions on Image Processing 16(1), 36–45 (2007)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Koga, H.: A General Formula of the (t,n)-Threshold Visual Secret Sharing Scheme. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 328–345. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    Krause, M., Simon, H.U.: Determining the optimal contrast for secret sharing schemes in visual cryptography. Combinatorics, Probability & Computing 12(3), 285–299 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Liu, F., Wu, C.K., Lin, X.J.: The alignment problem of visual cryptography schemes. Designs, Codes and Cryptography 50, 215–227 (2009)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Liu, F., Wu, C.K., Lin, X.J.: Step construction of visual cryptography schemes. IEEE Transactions on Information Forensics & Security 5(1), 27–38 (2010)CrossRefGoogle Scholar
  19. 19.
    Naor, M., Shamir, A.: Visual Cryptography. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 1–12. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  20. 20.
    De Prisco, R., De Santis, A.: Cheating Immune (2,n)-Threshold Visual Secret Sharing. In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 216–228. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  21. 21.
    Ito, R., Kuwakado, H., Tanaka, H.: Image size invariant visual cryptography. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Science E82-A(10), 2172–2177 (1999)Google Scholar
  22. 22.
    Tsai, D.S., Chen, T.H., Horng, G.B.: A cheating prevention scheme for binary visual cryptography with homogeneous secret images. Pattern Recognition 40, 2356–2366 (2007)zbMATHCrossRefGoogle Scholar
  23. 23.
    Tzeng, W.G., Hu, C.M.: A new approach for visual cryptography. Designs, Codes and Cryptography 27, 207–227 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Wang, Z.M., Arce, G.R., Di Crescenzo, G.: Halftone visual cryptography via error diffusion. IEEE Transactions on Information Forensics and Security 4(3), 383–396 (2009)CrossRefGoogle Scholar
  25. 25.
    Yang, C.N.: New visual secret sharing schemes using probabilistic method. Pattern Recognition Letters 25, 481–494 (2004)CrossRefGoogle Scholar
  26. 26.
    Yang, C.N., Chen, T.S.: Reduce shadowsize in aspect ratio invariant visual secret sharing schemes using a square block-wise operation. Pattern Recognition 39, 1300–1314 (2006)zbMATHCrossRefGoogle Scholar
  27. 27.
    Yang, C.N., Chen, T.S.: Visual secret sharing scheme: prioritizing the secret pixels with different pixel expansions to enhance the image contrast. Optical Engineering 46(9), 097005 (2007)CrossRefGoogle Scholar
  28. 28.
    Yang, C.N., Chen, T.S.: Colored visual cryptography scheme based on additive color mixing. Pattern Recognition 41, 3114–3129 (2008)zbMATHCrossRefGoogle Scholar
  29. 29.
    Yang, C.N., Chung, T.H.: A general multi-secret visual cryptography scheme. Optics Communications 283(24), 4949–4962 (2010)CrossRefGoogle Scholar
  30. 30.
    Zhou, Z., Arce, G.R., Di Crescenzo, G.: Halftone visual cryptography. IEEE Transactions on Image Processing 15(8), 2441–2453 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Teng Guo
    • 1
    • 2
  • Feng Liu
    • 1
  • ChuanKun Wu
    • 1
  1. 1.State Key Laboratory of Information Security, Institute of Information EngineeringChinese Academy of SciencesBeijingChina
  2. 2.Graduate University of Chinese Academy of SciencesBeijingChina

Personalised recommendations