Advertisement

A Pre-computable Signature Scheme with Efficient Verification for RFID

  • Fuchun Guo
  • Yi Mu
  • Willy Susilo
  • Vijay Varadharajan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7232)

Abstract

Passive RFID tags have limited rewritable memory for data storage and limited computation power, which pose difficulties to implement security protection on RFID tags. It has been shown that strong security and privacy protections for RFID require utilizing public-key cryptography. Unfortunately, the implementation of public key cryptography is infeasible in low-cost passive tags. With this issue in mind, in this work, we propose a pre-computable signature scheme with a very efficient signature verification algorithm for RFID applications. Our signature scheme is provably secure under the DDH assumption and a variant of q-SDH assumption. With pre-computations, no exponentiation is required in our signature verification. Our research shows that it is feasible for low-cost RFID tags to verify signatures with the basic modular multiplication only (if they have a small amount of writable memory).

Keywords

RFID Low-cost RFID tags Signature verification Modular multiplication 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bellare, M., Garay, J.A., Rabin, T.: Fast Batch Verification for Modular Exponentiation and Digital Signatures. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 236–250. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  2. 2.
    Blass, E.O., Elkhiyaoui, K., Molva, R.: Tracker: Security and privacy for rfid-based supply chains. In: NDSS 2011. The Internet Society (2011)Google Scholar
  3. 3.
    Boneh, D., Boyen, X.: Short Signatures Without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Boneh, D., Boyen, X.: Short signatures without random oracles and the sdh assumption in bilinear groups. J. Cryptology 21(2), 149–177 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Boneh, D., Boyen, X., Shacham, H.: Short Group Signatures. In: Franklin, M.K. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)Google Scholar
  6. 6.
    Boyen, X.: The Uber-Assumption Family. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 39–56. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Chow, H.K.H., Choy, K.L., Lee, W.B., Lau, K.C.: Design of a rfid case-based resource management system for warehouse operations. Expert Syst. Appl. 30(4), 561–576 (2006)CrossRefGoogle Scholar
  8. 8.
    Chow, S.S.M., Au, M.H., Susilo, W.: Server-aided signatures verification secure against collusion attack. In: Cheung, B.S.N., Hui, L.C.K., Sandhu, R.S., Wong, D.S. (eds.) ASIACCS 2011, pp. 401–405. ACM (2011)Google Scholar
  9. 9.
    Even, S., Goldreich, O., Micali, S.: On-Line/Off-Line Digital Signatures. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 263–275. Springer, Heidelberg (1990)Google Scholar
  10. 10.
    Ferrara, A.L., Green, M., Hohenberger, S., Pedersen, M.Ø.: Practical Short Signature Batch Verification. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 309–324. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Fiat, A.: Batch rsa. J. Cryptology 10(2), 75–88 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Gao, C.-z., Wei, B., Xie, D., Tang, C.: Divisible On-Line/Off-Line Signatures. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 148–163. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Girault, M., Lefranc, D.: Server-Aided Verification: Theory and Practice. In: Roy, B.K. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 605–623. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Hein, D.M., Wolkerstorfer, J., Felber, N.: ECC Is Ready for RFID – A Proof in Silicon. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 401–413. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Juels, A.: Minimalist Cryptography for Low-Cost RFID Tags (Extended Abstract). In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 149–164. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Lamport, L.: Constructing digital signatures from a one-way function. Tech. rep., SRI-CSL-98, SRI International Computer Science Laboratory (1979)Google Scholar
  17. 17.
    Lee, S.Y., Wang, L.H., Fang, Q.: A low-power rfid integrated circuits for intelligent healthcare systems. IEEE Transactions on Information Technology in Biomedicine 14(6), 1387–1396 (2010)CrossRefGoogle Scholar
  18. 18.
    Lim, C.H., Lee, P.J.: Server (Prover/Signer)-Aided Verification of Identity Proofs and Signatures. In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 64–78. Springer, Heidelberg (1995)Google Scholar
  19. 19.
    O’Neill, M.: Low-cost sha-1 hash function architecture for rfid tags. In: RFIDSec 2008 (2008)Google Scholar
  20. 20.
    Oren, Y., Feldhofer, M.: A low-resource public-key identification scheme for rfid tags and sensor nodes. In: Basin, D.A., Capkun, S., Lee, W. (eds.) WISEC 2009, pp. 59–68. ACM (2009)Google Scholar
  21. 21.
    Paillier, P., Vergnaud, D.: Discrete-Log-Based Signatures May Not Be Equivalent to Discrete Log. In: Roy, B.K. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 1–20. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  22. 22.
    Paise, R.I., Vaudenay, S.: Mutual authentication in rfid: security and privacy. In: Abe, M., Gligor, V.D. (eds.) ASIACCS 2008, pp. 292–299. ACM (2008)Google Scholar
  23. 23.
    Shamir, A.: Memory Efficient Variants of Public-Key Schemes for Smart Card Applications. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 445–449. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  24. 24.
    Shamir, A., Tauman, Y.: Improved Online/Offline Signature Schemes. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 355–367. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  25. 25.
    Tsang, P.P., Chow, S.S.M., Smith, S.W.: Batch Pairing Delegation. In: Miyaji, A., Kikuchi, H., Rannenberg, K. (eds.) IWSEC 2007. LNCS, vol. 4752, pp. 74–90. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  26. 26.
    Vaudenay, S.: On Privacy Models for RFID. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 68–87. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  27. 27.
    Weis, S.A., Sarma, S.E., Rivest, R.L., Engels, D.W.: Security and Privacy Aspects of Low-Cost Radio Frequency Identification Systems. In: Hutter, D., Müller, G., Stephan, W., Ullmann, M. (eds.) SPC 2003. LNCS, vol. 2802, pp. 201–212. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Fuchun Guo
    • 1
  • Yi Mu
    • 1
  • Willy Susilo
    • 1
  • Vijay Varadharajan
    • 2
  1. 1.Centre for Computer and Information Security Research, School of Computer Science and Software EngineeringUniversity of WollongongWollongongAustralia
  2. 2.Information and Networked Systems Security Research, Department of Computing, Faculty of ScienceMacquarie UniversitySydneyAustralia

Personalised recommendations