Skip to main content

Material Substitution for Automotive Applications: A Comparative Life Cycle Analysis

  • Conference paper
Leveraging Technology for a Sustainable World

Abstract

Lightweight materials have become an important strategy in the automotive industry to enable vehicle weight reduction and reduce fuel consumption. However, when developing specific strategies, the overall benefits of any material should be analyzed throughout its life cycle to comprehend energy/environmental differences that arise during its processing and its final use. A key example is aluminum which despite having great potential in the use phase requires large amounts of energy to process. This paper provides a comparison between aluminum and steel utilizing a life-cycle approach. This approach reveals the importance of incorporating a recycling strategy to leverage aluminum’s low-weight attributes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sutherland, J., Gunter, K.: A global perspective on the environmental challenges facing the automotive industry: state-of-the-art and directions for the future. Int. J. Vehicle Design 35(1), 86–110 (2004)

    Article  Google Scholar 

  2. McAuley, J.W.: Global Sustainability and Key Needs, in Future Automotive Design. Environ. Sci. Technol. 37, 5414–5416 (2003)

    Article  Google Scholar 

  3. U.S. Environmental Protection Agency (EPA), Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2009 (2011), http://www.epa.gov

  4. Geyer, R.: Life cycle greenhouse gas emission assessments of automotive materials the example of mild steel, advanced high strength steel and aluminum in body in white applications methodology (2007), www.worldautosteel.org

  5. Bertram, M., Buxmann, K., Furrer, P.: Analysis of greenhouse gas emissions related to aluminium transport applications. Int. J. LCA 14(1), 62–69 (2009)

    Article  Google Scholar 

  6. Schmidheiny: Changing course: a global business perspective on development and the environment. MIT Press, Cambridge (1992)

    Google Scholar 

  7. Shaw, J., Coates, G.: Automotive Steel Performance Advantages for Mass Reduction and Climate Change (2008), www.autosteel.org

  8. Geyer, R.: CO 2 equivalent with Advanced High-Strength Steels (2007), www.autosteel.org

  9. Koffler, C., Rohde-Brandenburger, K.: On the calculation of fuel savings through lightweight design in automotive life cycle assessments. Int. J. LCA 15(1), 128–135 (2009)

    Article  Google Scholar 

  10. International Aluminium Institute: Improving Sustainability in the Transport Sector through Weight Reduction and the Application of Aluminium, www.world-aluminium.org

  11. Froes, F.H.F., Kiese, H., Bergoint, D.J.: Titanium in the family automobile: the cost challenge. JOM, 40–44 (2004)

    Google Scholar 

  12. Sujit, D.: The Life-Cycle Impacts of Aluminum Body-in-White Automotive Material. JOM 261, 20–24 (2000)

    Google Scholar 

  13. Kim, H.J., McMillan, C., Winebrake, J.J., Keoleian, G.A., Skerlos, S.J.: Evaluating Life Cycle Cost, Emissions and Materials Use for an Aluminum Intensive Vehicle: Preliminary Analysis. In: Proceedings of NSF Engineering Research and Innovation Conference, Knoxville, Tennessee (2008)

    Google Scholar 

  14. Helms, H., Lambrecht, U.: The Potential Contribution of Light-Weighting to Reduce Transport Energy Consumption. Int. J. LCA, 1–7 (2006)

    Google Scholar 

  15. http://aluminium.matter.org.uk/content/html/eng/default.asp?catid=7&pageid=230565674

  16. Puri, P., Compston, P., Pantano, V.: Life cycle assessment of Australian automotive door skins. Int. J. LCA 14, 420–428 (2009)

    Article  Google Scholar 

  17. Omar, M.A.: The automotive body manufacturing systems and processes. Wiley, New York (2011)

    Book  Google Scholar 

  18. Gabi Education Handbook, http://www.pe-international.com

  19. Ingarao, G., Di Lorenzo, R., Micari, F.: Sustainability issues in sheet metal forming processes: an overview. J. Clean Prod. 19(14), 337–347 (2011)

    Article  Google Scholar 

  20. Ingarao, G., Gagliardi, F., Anghinelli, O., Di Lorenzo, R.: A Sensitivity Analysis on Environmental Sustainability in Sheet Metal Forming. In: Proceeding of ICTP International Conference on Technology of Plasticity, Aachen, Germany (2011)

    Google Scholar 

  21. Novotny, S., Geyer, M.: Process design for hydroforming of lightweight metal sheets at elevated temperatures. In: J. Mater. Process. Tech., pp. 594–599 (2003)

    Google Scholar 

  22. Fadi, K., Marwan, K.K.: Integrated approach to the superplastic forming of lightweight alloys: towards sustainable manufacturing. Int. J. Sust. Manuf. (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Marretta, L., Di Lorenzo, R., Micari, F., Arinez, J., Dornfeld, D. (2012). Material Substitution for Automotive Applications: A Comparative Life Cycle Analysis. In: Dornfeld, D., Linke, B. (eds) Leveraging Technology for a Sustainable World. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29069-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29069-5_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29068-8

  • Online ISBN: 978-3-642-29069-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics