Skip to main content

Metabolic Transitions During Feast and Famine in Spiders

  • Chapter
  • First Online:
Comparative Physiology of Fasting, Starvation, and Food Limitation

Abstract

Spiders are a diverse group of invertebrates that successfully inhabit most terrestrial ecosystems. Part of their success can be ascribed to a remarkable feeding ecology that allows spiders to tolerate prolonged periods of starvation and provide the capacity to feed on very large prey. In this chapter, we review the existing knowledge on the physiological transitions in spiders during prolonged fasting and during consumption of (large) meals. We focus on the metabolic transitions between feast and famine as well as the use and uptake of macronutrients and water. Spiders reduce energy consumption during fasting and food deprivation is primarily associated with utilization of lipid stores. Also, despite the continuous catabolism of energy stores spiders defend body mass through a relative increase in body water. Feeding causes huge stimulation of energy consumption, where metabolic rate can increase more than 20-fold. The elevated metabolism persists for hours to days during the postprandial period and digestion is likely to constitute the largest sustained increase in metabolism of spiders. Because spiders use extraoral digestion, it is easy to investigate the energy balance of prey and predator during feeding. We argue, therefore, that spiders represent a promising animal model to study energy flux during feeding and fasting and hope this review will inspire further studies on the feeding physiology and ecology of this interesting animal group.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aitchison C (1984) Low temperature feeding by winter active spiders. J Arachnol 12:297–305

    Google Scholar 

  • Anderson JF (1970) Metabolic rates of spiders. Comp Biochem Physiol 33:51–72

    Article  PubMed  CAS  Google Scholar 

  • Anderson JF (1974) Responses to Starvation in the spiders Lycosa Lenta (Hentz) and Filistata Hibernalis (Hentz). Ecology 55:576–585

    Article  Google Scholar 

  • Bressendorff BB, Toft S (2011) Dome-shaped functional response induced by nutrient imbalance of the prey. Biol Lett 7(517):520

    Google Scholar 

  • Carrel J, Heathcote R (1976) Heart rate in spiders: influence of body size and foraging energetics. Science 193:148–150

    Article  PubMed  CAS  Google Scholar 

  • Cohen AC (1995) Extra-oral digestion in predaceous terrestrial arthropoda. Ann Rev Ent 40:85–103

    Article  CAS  Google Scholar 

  • Collatz KG (1987) Structure and function of the digestive tract. In: Nentwig W (ed) Ecophysiology of spiders. Springer, Berlin

    Google Scholar 

  • Collatz K-G, Mommsen T (1975) Veränderung der körperzusammensetzung und der stoffwechselintensität der spinne Tegenaria atrica (C.L. Koch) (Agelenidae) nach kurzem und langem hunger. J Comp Physiol B 98:205–212

    Article  CAS  Google Scholar 

  • Foelix R (1996) Biology of spiders, 2nd edn. Oxford University Press, New York

    Google Scholar 

  • Ford MJ (1977) Metabolic costs of the predation strategy of the spider Pardosa amentata (Clerck) (Lycosidae). Oecologia 28:333–340

    Article  Google Scholar 

  • Furrer S, Ward PI (1995) Differential nutrient extraction in the funnel web spider Agelena labyrinthica. Physiol Entomol 20:18–22

    Article  Google Scholar 

  • Greenstone MH, Bennett AF (1980) Foraging strategy and metabolic rate in spiders. Ecology 61:1255–1259

    Article  Google Scholar 

  • Guppy M, Withers P (1999) Metabolic depression in animals: physiological perspectives and biochemical generalizations. Biol Rev 74:1–40

    Article  PubMed  CAS  Google Scholar 

  • Jensen K, Mayntz D, Wang T, Simpson SJ, Overgaard J (2010) Metabolic consequences of feeding and fasting on nutritionally different diets in the wolf spider Pardosa prativaga. J Insect Physiol 56:1095–1100

    Article  PubMed  CAS  Google Scholar 

  • Jensen K, Mayntz D, Toft S, Raubenheimer D, Simpson SJ (2011) Prey nutrient composition has different effects on Pardosa wolf spiders with dissimilar life histories. Oecologia 165:577–583

    Article  PubMed  Google Scholar 

  • Knudsen PS (2011) Feeding following short- and long-term food deprivation in the giant white-knee tarantula Acanthoscurria geniculata. Masters thesis, Aarhus University

    Google Scholar 

  • Korenko S, Pekár S (2010) Is there intraguild predation between winter-active spiders (Araneae) on apple tree bark? Biol Control 54:206–212

    Article  Google Scholar 

  • Laino A, Cunningham ML, García F, Heras H (2009) First insight into the lipid uptake, storage and mobilization in arachnids: role of midgut diverticula and lipoproteins. J Insect Physiol 55:1118–1124

    Article  PubMed  CAS  Google Scholar 

  • Laino A, Cunningham ML, Heras H, Garcia F (2011) In vitro lipid transfer between lipoproteins and midgut-diverticula in the spider Polybetes pythagoricus. Comp Biochem Physiol B 160:181–186

    Article  PubMed  CAS  Google Scholar 

  • Lang A, Klarenberg AJ (1997) Experiments on the foraging behaviour of the hunting spider Pisaura mirabilis (Araneae: Pisauridae): utilization of single prey items. Eur J Entomol 94:453–459

    Google Scholar 

  • Lauridsen H, Hansen K, Wang T, Agger P, Andersen JL, Knudsen PS, Rasmussen AS, Uhrenholt L, Pedersen M (2011) Inside out: modern imaging techniques to reveal animal anatomy. PLoS ONE 6:e17879. doi:10.1371/journal.pone.0017879

    Article  PubMed  CAS  Google Scholar 

  • Lease HM, Wolf BO (2011) Lipid content of terrestrial arthropods in relation to body size, phylogeny, ontogeny and sex. Physiol Entomol 36:29–38

    Article  CAS  Google Scholar 

  • Lighton JRB, Fielden JL (1995) Mass scaling of standard metabolism in ticks—a valid case of low metabolic rates in sit-and-wait strategists. Physiol Zool 68:43–62

    Google Scholar 

  • Mayntz D, Toft S, Vollrath F (2003) Effects of prey quality and availability on the life history of a trap-building predator. Oikos 101:631–638

    Article  Google Scholar 

  • Mayntz D, Raubenheimer D, Salomon M, Toft S, Simpson SJ (2005) Nutrient-specific foraging in invertebrate predators. Science 307:111–113

    Article  PubMed  CAS  Google Scholar 

  • McCormick S, Polis GA (1982) Arthropods that prey on vertebrates. Biol Rev 57:29–58

    Article  Google Scholar 

  • McCue (2004) General effects of temperature on animal biology. In: Valenzuela N, Lance VA (eds) Temperature dependent sex determination. Smithsonian Books, Washington, DC, pp 71–78

    Google Scholar 

  • McCue MD (2006) Specific dynamic action: a century of investigation. Comp Biochem Physiol A 144:381–394

    Article  CAS  Google Scholar 

  • McCue MD (2010) Starvation physiology: reviewing the different strategies animals use to survive a common challenge. Comp Biochem Physiol A 156:1–18

    Google Scholar 

  • Mommsen TP (1978a) Digestive enzymes of a spider (Tegenaria atrica Koch) I. General remarks, digestion of proteins. Comp Biochem Physiol A 60:365–370

    Article  Google Scholar 

  • Mommsen TP (1978b) Digestive enzymes of a spider (Tegenaria atrica Koch) II. Carbohydrases. Comp Biochem Physiol A 60:371–375

    Article  Google Scholar 

  • Mommsen TP (1978c) Digestive enzymes of a spider (Tegenaria atrica Koch) III. esterases, phosphatases, nucleases. Comp Biochem Physiol A 60:377–382

    Article  Google Scholar 

  • Nakamura K (1987) Hunger and starvation. In: Nentwig W (ed) Ecophysiology of spiders. Springer, Berlin

    Google Scholar 

  • Nentwig W (1987) The prey of spiders. In: Nentwig W (ed) Ecophysiology of spiders. Springer, Berlin

    Google Scholar 

  • Nespolo RF, Correa L, Perez-Apablaza CX, Cortes P, Bartheld JL (2011) Energy metabolism and the postprandial response of the Chilean tarantulas, Euathlus truculentus (Araneae: Theraphosidae). Comp Biochem Physiol A 159:379–382

    Article  Google Scholar 

  • Samu F, Biro Z (1993) Functional-response, multiple feeding and wasteful killing in a wolf spider (Araneae, Lycosidae). Eur J Entomol 90:471–476

    Google Scholar 

  • Sandidge JS (2003) Arachnology: scavenging by brown recluse spiders. Nature 426:30

    Article  PubMed  CAS  Google Scholar 

  • Schmidt-Nielsen K (1984) Scaling: why is animal size so important?, 1st edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Schmitz A (2004) Metabolic rates during rest and activity in differently tracheated spiders (Arachnida, Araneae): Pardosa lugubris (Lycosidae) and Marpissa muscosa (Salticidae). J Comp Physiol B 174:519–526

    PubMed  CAS  Google Scholar 

  • Schmitz A (2005) Spiders on a treadmill: influence of running activity on metabolic rates in Pardosa lugubris (Araneae, Lycosidae) and Marpissa muscosa (Araneae, Salticidae). J Exp Biol 208:1401–1411

    Article  PubMed  Google Scholar 

  • Secor SM (2008) Specific dynamic action: a review of the postprandial metabolic response. J Comp Physiol B 179:1–56

    Article  PubMed  Google Scholar 

  • Seymour RS, Vinegar A (1973) Thermal relations, water loss and oxygen consumption of a North American tarantula. Comp Biochem Physiol A 44:83–96

    Article  CAS  Google Scholar 

  • Shillington C (2005) Inter-sexual differences in resting metabolic rates in the Texas tarantula, Aphonopelma anax. Comp Biochem Physiol A 142:439–445

    Article  Google Scholar 

  • Smith RB, Mommsen TP (1984) Pollen feeding in an orb-weaving spider. Science 226:1330–1332

    Article  PubMed  CAS  Google Scholar 

  • Stewart DM, Martin AW (1970) Blood and fluid balance of the common tarantula, Dugesiella hentzi. Z Vergl Physiol 70:223–246

    Article  Google Scholar 

  • Tanaka K, Itô T (1982) Decrease in respiratory rate in a wolf spider, Pardosa astrigera (L. Koch), under starvation. Res Popul Ecol 24:360–374

    Article  Google Scholar 

  • Tanaka K, Itô Y, Saito T (1985) Reduced respiratory quotient by starvation in a wolf spider, Pardosa astrigera (L. Koch). Comp Biochem Physiol A 80:415–418

    Article  Google Scholar 

  • Toft S (1999) Prey choice and spider fitness. J Arachnol 27:301–307

    Google Scholar 

  • Turnbull AL (1973) Ecology of the true spiders (Araneomorphae). Ann Rev Entomol 18:305–348

    Article  Google Scholar 

  • Vetter RS (2011) Scavenging by spiders (Araneae) and its relationship to pest management of the brown recluse spider. J Econ Entomol 104:986–989

    Article  PubMed  Google Scholar 

  • Wang T, Busk M, Overgaard J (2001) The respiratory consequences of feeding in amphibians and reptiles. Comp Biochem Physiol A 128:533–547

    Article  Google Scholar 

  • Wang T, Hung CCY, Randall DJ (2006) The comparative physiology of food deprivation: from feast to famine. Ann Rev Physiol 68:223–251

    Article  Google Scholar 

  • Wilder SM (2011) Spider nutrition: an integrative perspective. Adv Insect Physiol 40:87–136

    Article  Google Scholar 

  • Wise DH (1995) Spiders in ecological webs. Cambridge University Press, Cambridge

    Google Scholar 

  • Wu L, Yun Y, Li J, Chen J, Zhang H, Peng Y (2011) Preference for feeding on honey solution and its effect on survival, development, and fecundity of Ebrechtella tricuspidata. Entomol Exp Appl 140:52–58

    Article  Google Scholar 

Download references

Acknowledgments

We thank Marshall McCue for inviting us to write this review and for his constructive criticism to improve our chapter. We also thank David Mayntz and Peter Skødt Knudsen for helpful comments and suggestions. Finally, we would like to acknowledge the Danish Research Council (FNU) and Strategic Research Council (NOVENIA) for supporting our research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Overgaard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Overgaard, J., Wang, T. (2012). Metabolic Transitions During Feast and Famine in Spiders. In: McCue, M. (eds) Comparative Physiology of Fasting, Starvation, and Food Limitation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29056-5_5

Download citation

Publish with us

Policies and ethics