Skip to main content

A History of Modern Research into Fasting, Starvation, and Inanition

  • Chapter
  • First Online:
Comparative Physiology of Fasting, Starvation, and Food Limitation

Abstract

Fasting and starvation (prolonged fasting), are the most severe forms of malnutrition, and are experienced by aquatic and terrestrial species due to physiological, nutritional, or behavioral constraints. Migration, metamorphosis, reproduction, and molting are among the main endogenous factors, while food paucity, unpredictable feeding times, remote feeding grounds, and environmental and climatic changes are other external but similarly decisive cues. When the critical starving period is over, it can necessitate gradual refeeding, induce nutritional shifts, and also induce permanent damage. It has, therefore, always been a goal in physiology to understand the different adjustments during food deprivation and refeeding phases. In this field, most of the studies focusing on the physiological consequences of the imbalance between energy intake and energy expenditure have considered time to be the main function. However, since the late 1970s/early 1980s and the "rediscovery" of earlier studies, some researchers have considered starvation to be a continuous series of different metabolic phases composed of a short initial period of adaptation followed by a second phase characterized by fat oxidation. At this point, body lipid stores are not fully exhausted and a third nonpathological and reversible phase follows during which energy requirements are mostly derived from increased protein utilization. If prolonged, this phase can lead to a critical lethal endpoint, even if food becomes available. More recent studies have investigated the alarm signal that triggers behavioral changes such as nest abandonment and refeeding, and have also examined complex hormonal and metabolic regulations in response to food deprivation, such as the marked reduction of apolipoprotein A-IV levels observed in rodents during long-term fasting. The new challenges in this field concern the severely disrupted populations faced with increasing food restrictions due to anthropization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams SH, Costa DP (1993) Water conservation and protein metabolism in northern elephant seal pups during the postweaning fast. J Comp Physiol 163B:367–373

    Google Scholar 

  • Allen F (1915a) Prolonged fasting in diabetes. Am J Med Sci 150:480–485

    Article  CAS  Google Scholar 

  • Allen F (1915b) The treatment of diabetes. Boston Med Surg J 172:241–247

    Article  Google Scholar 

  • Andersen JB, Rourke BC, Caiozzo VJ, Bennett AF, Hicks JW (2005) Physiology: postprandial cardiac hypertrophy in pythons. Nature 434(7029):37–38

    Article  PubMed  CAS  Google Scholar 

  • Andrade DV, Toledo LF, Abe AS, Wang T (2004) Ventilatory compensation of the alkaline tide during digestion in the snake Boa constrictor. J Exp Biol 207:1379–1385

    Article  PubMed  CAS  Google Scholar 

  • Atkinson SN, Ramsay MA (1995) The effects of prolonged fasting on the body composition and reproductive success of females Polar bears (Ursus maritimus). Funct Ecol 9:559–567

    Article  Google Scholar 

  • Balasse EO (1979) Kinetics of ketone body metabolism in fasting humans. Metabolism 28(1):41–50

    Article  PubMed  CAS  Google Scholar 

  • Barcellos LJG, Marqueze A, Trapp M, Quevedo RM, Ferreira D (2010) The effects of fasting on cortisol, blood glucose and liver and muscle glycogen in adult jundiá Rhamdia quelen. Aquaculture 300(1–4):231–236

    Article  CAS  Google Scholar 

  • Battley PF, Dietz MW, Piersma T, Dekinga A, Tang S, Hulsman K (2001) Is longdistance bird flight equivalent to a high-energy fast? Body composition changes in freely migrating and captive fasting great knots. Physiol Biochem Zool 74:435–449

    Article  PubMed  CAS  Google Scholar 

  • Belkhou R, Cherel Y, Heitz A, Robin JP, Le Maho Y (1991) Energy contribution of proteins and lipids during prolonged fasting in the rat. Nutr Res 11:365–374

    Article  CAS  Google Scholar 

  • Bélanger F, Blier PU, Dutil JD (2002) Digestive capacity and compensatory growth in Atlantic cod (Gadus morhua). J Fish Biol 26:121–128

    Google Scholar 

  • Benedict FG (1915) A study of prolonged fasting. Carnegie Institution of Washington, Publication No 203, Washington, DC

    Google Scholar 

  • Benedict FG (1932) The Physiology of large reptiles, with special reference to the heat production of snakes, tortoises, lizards and alligators. Carnegie Institution of Washington, Publication No 425, Washington, DC

    Google Scholar 

  • Benedict FG, Fox EL (1931) Body temperature and heat regulation of large snakes. Proc Nat Acad Sci U S A 17(10):584–587

    Article  CAS  Google Scholar 

  • Benedict FG, Fox EL, Coropatchinsky V (1932) The incubating python: A temperature study. Proc Nat Acad Sci U S A 18(2):209–212

    Article  CAS  Google Scholar 

  • Bertile F, Oudart H, Le Maho Y, Raclot T (2003) Recombinant leptin in the hypothalamic response to late fasting. Biochem Biophys Res Commun 310:949–955

    Article  PubMed  CAS  Google Scholar 

  • Bertile F, Zahn S, Raclot T (2007) In: Takeyama T (ed) Messenger RNA research perspectives. Nova Science Publishers, New York

    Google Scholar 

  • Bertile F, Schaeffer C, Le Maho Y, Raclot T, Van Dorsselaer A (2009) Proteomic approach to identify differentially expressed plasma proteins between the fed and prolonged fasted states. Proteomics 9(1):148–158

    Article  PubMed  CAS  Google Scholar 

  • Bidder F, Schmidt C (1932) Die Verdauungssäfte und der Stoffwechsel. Mitau und Leipzig, 413p

    Google Scholar 

  • Bistrian BR, Blackburn G, Vitale J, Cochran D, Naylor J (1976) Prevalence of malnutrition in general medical patients. J Am Med Assoc 235:1567–1570

    Article  CAS  Google Scholar 

  • Bistrian BR, Sherman M, Blackburn G, Marshall R, Shaw C (1977) Cellular immunity in adult marasmus. Arch Int Med 137:1408–1411

    Article  CAS  Google Scholar 

  • Blier PU, Dutil J-D, Lemieux H, Bélanger F, Bitetera L (2007) Phenotypic flexibility of digestive system in Atlantic cod (Gadus morhua). Comp Biochem Physiol 146A:174–179

    CAS  Google Scholar 

  • Bloom WL (1959) Fasting as an introduction to the treatment of obesity. Metabolism 8(3):214–220

    PubMed  CAS  Google Scholar 

  • Cahill GF Jr (1970) Starvation in man. New Engl J Med 282:668–675

    Article  PubMed  CAS  Google Scholar 

  • Cahill GF Jr, Herrera MG, Morgan AP, Soeldner JS, Steinke J, Levy PL, Reichard GA Jr, Kipnis DM (1966) Hormone-fuel interrelationships during fasting. J Clin Invest 45(11):1751–1769

    Article  PubMed  CAS  Google Scholar 

  • Cahill GF Jr, Owen OE, Felig P (1968) Insulin and fuel homeostasis. Physiologist 11(2):97–102

    PubMed  Google Scholar 

  • Cahill GF Jr, Rossini AA, Aoki TT (1974) Metabolic effects of insulin in normal and diabetic man (short review). Endocrinol Exp 8(2):89–96

    PubMed  CAS  Google Scholar 

  • Castellini MA, Rea LD (1992) The biochemistry of natural fasting at its limits. Experientia 48:575–582

    Article  PubMed  CAS  Google Scholar 

  • Center for Disease Control (1977) Morbidity and mortality weekly report, Nov 18:383

    Google Scholar 

  • Challet E, Le Maho Y, Robin JP, Malan A, Cherel Y (1995) Involvement of corticosterone in the fasting-induced rise in protein utilization and locomotor activity. Pharmacol Biochem Behav 50:405–412

    Article  PubMed  CAS  Google Scholar 

  • Chambers WH, Chandler JP, Barker SB (1939) The metabolism of carbohydrate and protein during prolonged fasting. J Biol Chem 137:95–109

    Google Scholar 

  • Cherel Y, Gilles J, Handrich Y, Le Maho Y (1994) Nutrients reserve dynamics and energetics during long-term fasting in the king penguins (Aptenodytes Patagonia). J Zool Lond 234:1–12

    Article  Google Scholar 

  • Cherel Y, Groscolas R (1999) Relationships between nutrient storage and nutrient utilisation in long-term fasting birds and mammals. In: Adams NJ, Slotow RH (eds) Proceedings of the 22nd International Ornithological Congress, Durban. Johannesburg, South Africa

    Google Scholar 

  • Cherel Y, Le Maho Y (1985) Five months of fasting in king penguin chicks: body mass loss and fuel metabolims. Am J Physiol 249:R387–R392

    PubMed  CAS  Google Scholar 

  • Cherel Y, Le Maho Y (1991) Refeeding after the late increase in nitrogen excretion during prolonged fasting in the rat. Physiol Behav 50(2):345–349

    Article  PubMed  CAS  Google Scholar 

  • Cherel Y, el Omari B, Le Maho Y, Saboureau M (1995) Protein and lipid utilization during fasting with shallow and deep hypothermia in the European hedgehog (Erinaceus europaeus). J Comp Physiol 164B(8):653–658

    Google Scholar 

  • Cherel Y, Leloup J, Le Maho Y (1988a) Fasting in King Penguin II. Hormonal and metabolic changes during molt. Am J Physiol 254:R178–R184

    PubMed  CAS  Google Scholar 

  • Cherel Y, Robin JP, Heitz A, Calgari C, Le Maho Y (1992) Relationships between lipid availability and protein utilization during prolonged fasting. J Comp Physiol 162B:305–313

    Google Scholar 

  • Cherel Y, Robin J-P, Le Maho Y (1988b) Physiology and biochemistry of long-term fasting in birds. Can J Zool 66:159–166

    Article  CAS  Google Scholar 

  • Cherel Y, Robin J-P, Walch O, Karmann H, Netchitailo P, Le Maho Y (1988c) Fasting in king penguin I. Hormonal and metabolic changes during breeding. Am J Physiol 254:R170–R177

    PubMed  CAS  Google Scholar 

  • Chossat C (1843) Recherches expérimentales sur l’inanition. III. De l’alimentation insuffisante. Ann Sci Nat Zool 20(2):182–214

    Google Scholar 

  • Costa DP (1991) Reproduction and foraging energetics of pinnipeds: implications for life history patterns. In: Renouf D (ed) The behavior of pinnipeds. Chapman and Hall, London

    Google Scholar 

  • Cox CL, Secor SM (2008) Matched regulation of gastrointestinal performance in the Burmese python. Python molurus. J Exp Biol 211(7):1131–1140

    CAS  Google Scholar 

  • Cramp RL, Franklin CE (2003) Is re-feeding efficiency compromised by prolonged starvation during aestivation in the green striped burrowing frog, Cyclorana alboguttata? J Exp Zool 300A(2):126–132

    Article  Google Scholar 

  • Cramp RL, Franklin CE (2005) Arousal and re-feeding rapidly restores digestive tract morphology following aestivation in green-striped burrowing frogs. Comp Biochem Physiol 142A(4):451–460

    CAS  Google Scholar 

  • Cramp RL, Kayes SM, Meyer EA, Franklin CE (2009) Ups and downs of intestinal function with prolonged fasting during aestivation in the burrowing frog Cyclorana alboguttata. J Exp Biol 212(22):3656–3663

    Article  PubMed  CAS  Google Scholar 

  • Crook MA, Hally V, Panteli JV (2001) The importance of the refeeding syndrome. Nutrition 17(7–8):632–637

    Article  PubMed  CAS  Google Scholar 

  • Dave G, Johansson-Sjöbeck M-L, Larsson Å, Lewander K, Lidman U (1975) Metabolic and hematological effects of starvation in the European eel, Anguilla anguilla L.-I. Carbohydrate, lipid, protein and inorganic ion metabolism. Comp Biochem Physiol 52A:423–430

    Article  Google Scholar 

  • Drenick EJ, Swendseid ME, Blahd WH, Tuttle SG (1964) Prolonged starvation as treatment for severe obesity. JAMA 187:100–105

    Article  PubMed  CAS  Google Scholar 

  • Duncan GG, Duncan TG, Schless GL, Cristofori FC (1965) Contraindications and therapeutic results of fasting in obese patients. Ann N Y Acad Sci 131(1):632–636

    Article  PubMed  CAS  Google Scholar 

  • Eddy SF, Storey KB (2004) Up-regulation of fatty acid-binding proteins during hibernation in the little brown bat, Myotis lucifugus. Biochim Biophys Acta 1676(1):63–70

    Article  PubMed  CAS  Google Scholar 

  • Dunel-Erb S, Chevalier C, Laurent P, Bach A, Decrock F, Le Maho Y (2001) Restoration of the jejunal mucosa in rats refed after prolonged fasting. Comp Biochem Physiol 129A:933–947

    CAS  Google Scholar 

  • Errington PL (1939) The comparative ability of the bob-white and the ring-necked pheasant to withstand cold and hunger. Wilson Bull 51:22–37

    Google Scholar 

  • Falk C, Scheffer T (1854) Untersuchungen über den wassergehalt der organe durstender und nicht durstender hunde. Arch Physiol Heilk 13:509–522

    Google Scholar 

  • Falsone K, Jenni-Eiermann S, Jenni L (2009) Corticosterone in migrating songbirds during endurance flight. Horm Behav 56(5):548–556

    Article  PubMed  CAS  Google Scholar 

  • Folin O, Denis W (1915) Starvation and obesity, with special reference to acidosis. J Biol Chem 21:183–192

    CAS  Google Scholar 

  • Forbes GB, Drenick EJ (1979) Loss of body nitrogen on fasting. Am J Clin Nutr 32:1570–1574

    PubMed  CAS  Google Scholar 

  • French CJ, Hochachka PW, Mommsen TP (1983) Metabolic organization of liver during spawning migration of sockeye salmon. Am J Physiol 245:R827–R830

    PubMed  CAS  Google Scholar 

  • Gamrin L, Pia E, Forsberg AM, Hultman E, Wernerman J (1996) A descriptive study of skeletal muscle metabolism in critically ill patients: Free amino acids, energy-rich phosphates, protein, nucleic acids, fat, water, and electrolytes. Crit Care Med 24(4):575–583

    Article  PubMed  CAS  Google Scholar 

  • Garnett ES, Barnard DL, Ford J, Goodbody RA, Woodehouse MA (1969) Gross fragmentation of cardiac myofibrils after therapeutic starvation for obesity. Lancet 293(3):914–916

    Article  Google Scholar 

  • Gentile MG, Pastorelli P, Ciceri R, Manna GM, Collimedaglia S (2010) Specialized refeeding treatment for anorexia nervosa patients suffering from extreme undernutrition. Clin Nutr 29(5):627–632

    Article  PubMed  Google Scholar 

  • Gerson AR, Guglielmo CG (2011) House sparrows (Passer domesticus) increase protein catabolism in response to water restriction. Am J Physiol 300(4):R925–R930

    Article  CAS  Google Scholar 

  • Geyelin HR (1921) Fasting as a method for treating epilepsy. Med Rec 99:1037–1038

    Google Scholar 

  • Goldblatt MW (1925) Observations on the effect of various carbohydrates on the ketosis of starvation in human subjects. Biochem J 19:948–958

    PubMed  CAS  Google Scholar 

  • Goodman MN, Larsen PR, Kaplan MM, Aoki TT, Vernon RY, Ruderman NB (1980) Starvation in the rat. II. Effect of age and obesity on protein sparing and fuel metabolism. Am J Physiol 239:E277–E286

    PubMed  CAS  Google Scholar 

  • Goodman MN, Ruderman NB (1980) Starvation in the rat I. Effect of age and obesity on organ weights, RNA, DNA, and protein. Am J Physiol 239(4):E269–E276

    PubMed  CAS  Google Scholar 

  • Grande F (1964) Man under caloric deficiency. In: Dill DB (ed) Handbook of physiology. Adaptation to the environment. Am Physiol Soc, Washington, DC

    Google Scholar 

  • Groscolas R (1990) Metabolic adaptations to fasting in emperor and king penguins. In: Davis LS, Darby JT (eds) Penguin Biology. Academic, San Diego

    Google Scholar 

  • Groscolas R, Lacroix A, Robin JP (2008) Spontaneous egg or chick abandonment in energy-depleted king penguins: a role for corticosterone and prolactin? Horm Behav 53(1):51–60

    Article  PubMed  CAS  Google Scholar 

  • Guelpa G, Marie A (1911) La lutte contre l’épilepsie par la désintoxication et par la rééducation alimentaire. Revue de Thérapie Médico-chirurgicale 78:8–13

    Google Scholar 

  • Guglielmo CG (2010) Move that fatty acid: fuel selection and transport in migratory birds and bats. Integr Comp Biol 50(3):336–345

    Article  PubMed  Google Scholar 

  • Guglielmo CG, Williams TD, Zwingelstein G, Brichon G, Weber JM (2002) Plasma and muscle phospholipids are involved in the metabolic response to long-distance migration in a shorebird. J Comp Physiol 172B(5):409–417

    Google Scholar 

  • Habold C, Chevalier C, Dunel-Erb S, Foltzer-Jourdainne C, Le Maho Y, Lignot JH (2004) Effects of fasting and refeeding on jejunal morphology and cellular activity in rats in relation to depletion of body stores. Scand J Gastroenterol 39:531–539

    Article  PubMed  CAS  Google Scholar 

  • Habold C, Foltzer-Jourdainne C, Le Maho Y, Lignot JH, Oudart H (2005) Intestinal gluconeogenesis and glucose transport according to body fuel availability in rats. J Physiol 566:575–586

    Article  PubMed  CAS  Google Scholar 

  • Habold C, Foltzer-Jourdainne C, Arbiol C, Le Maho Y, Lignot JH (2006) Intestinal apoptosis changes linked to metabolic status in fasted and refed rats. Pflugers Archives—Eur J Physiol 451(6):749–759

    Article  CAS  Google Scholar 

  • Habold C, Reichardt F, Foltzer-Jourdainne C, Lignot JH (2007) Morphological changes of the rat intestinal lining in relation to body stores depletion during fasting and after refeeding. Pflugers Archives—Eur J Physiol 455(2):323–332

    Article  CAS  Google Scholar 

  • Hamilton CL (1969) Problems of refeeding after starvation in the rat. Ann N-Y Acad Sci 157:1004–1017

    Article  PubMed  CAS  Google Scholar 

  • Hearing SD (2004) Refeeding syndrome is underdiagnosed and undertreated, but treatable. Brit Med J 328:908–909

    Article  PubMed  Google Scholar 

  • Heinrich S (1916) Fasting and undernutrition in the treatment of diabetes. Rebman Company, NewYork

    Google Scholar 

  • Helmstetter C, Reix N, T’Flachebba M, Pope RK, Secor SM, Le Maho Y, Lignot JH (2009a) The effects of feeding on cell morphology and proliferation of the gastrointestinal tract of juvenile Burmese pythons (Python molurus). Zool Sci 26(9):632–638

    Article  PubMed  CAS  Google Scholar 

  • Helmstetter C, Pope RK, T’Flachebba M, Secor SM, Lignot JH (2009b) Functional changes with feeding of the gastro-intestinal epithelia of Burmese pythons (Python molurus). Can J Zool 87(12):1255–1267

    Article  Google Scholar 

  • Hervant F, Mathieu J, Durand J (2001) Behavioural, physiological and metabolic responses to long-term starvation and refeeding in a blind cave-dwelling (Proteus anguinus) and a surface-dwelling (Euproctus asper) salamander. J Exp Biol 204(2):269–281

    PubMed  CAS  Google Scholar 

  • Howe PE, Hawk PB (1911) Fasting studies: I. Nitrogen partition and physiological resistance as influenced by repeated fasting. J Am Chem Soc 33:215–254

    Article  CAS  Google Scholar 

  • Howe PE, Matthill HA, Hawk PB (1912) Fasting studies: VI. Distribution of nitrogen during a fast of one hundred and seventeen days. J Biol Chem 11:103–127

    Google Scholar 

  • Hume ID, Biebach H (1996) Digestive tract function in the long distance migratory garden warbler, Sylvia borin. J Comp Physiol 166B:388–395

    Google Scholar 

  • Inui Y, Ohshima Y (1966) Effect of starvation on metabolism and chemical composition of eels. Bull Japan Soc Sci Fish 32:492–501

    Article  CAS  Google Scholar 

  • Issartel J, Hervant F, de Fraipont M, Clobert J, Voituron Y (2009) High anoxia tolerance in the subterranean salamander Proteus anguinus without oxidative stress nor activation of antioxidant defenses during reoxygenation. J Comp Physiol 179B(4):543–551

    Google Scholar 

  • Issartel J, Voituron Y, Guillaume O, Clobert J, Hervant F (2010) Selection of physiological and metabolic adaptations to food deprivation in the Pyrenean newt Calotriton asper during cave colonisation. Comp Biochem Physiol 155A(1):77–83

    CAS  Google Scholar 

  • Jackson CM (1915) Effects of acute and chronic inanition upon the relative weights of the various organs and systems of adult albino rats. Am J Anat 18:75–116

    Article  Google Scholar 

  • Jenni L, Jenni-Eiermann S, Spina F, Schwabl H (2000) Regulation of protein breakdown and adrenocortical response to stress in birds during migratory flight. Am J Physiol 278(5):R1182–R1189

    CAS  Google Scholar 

  • Joslin E (1916) The treatment of diabetes mellitus. Can Med Assn J 6:673–684

    CAS  Google Scholar 

  • Kelley KM, Haigwood JT, Perez M, Galima MM (2001) Serum insulin-like growth factor binding proteins (IGFBPs) as markers for anabolic/catabolic condition in fishes. Comp Biochem Physiol 129B:229–236

    CAS  Google Scholar 

  • Keys A (1950) The biology of human starvation. In: Keys A, Brozek J, Menschel A, Mickelsen O, Taylor HL (eds), vol. 2. University of Minnesota Press, Minneapolis

    Google Scholar 

  • Klaassen M, Biebach H (1994) Energetics of fattening and starvation in the long-distance migratory garden warbler, Sylvia borin, during the migratory phase. J Comp Pysiol 164B:362–371

    Google Scholar 

  • Koubi HE, Robin JP, Dewasmes G, Le Maho Y, Frutoso J, Minaire Y (1991) Fasting-induced rise in locomotor activity in rats coincides with increased protein utilization. Physiol Behav 50:337–343

    Article  PubMed  CAS  Google Scholar 

  • Le Maho Y, Delclitte P, Chatonnet J (1976) Thermoregulation in fasting emperor penguins under natural conditions. Am J Physiol 231:913–922

    PubMed  Google Scholar 

  • Le Maho Y, Vu Van Kha H, Koubi H, Dewasmes G, Girard J, Ferri P, Cagnard M (1981) Body composition, energy expenditure and plasma metabolites in long-term fasting geese. Am J Physiol 241:342–354

    Google Scholar 

  • Lignot JH, Helmstetter C, Secor SM (2005) Postprandial morphological response of the intestinal epithelium of the Burmese python, Python molurus. Comp Biochem Physiol 141A:280–291

    CAS  Google Scholar 

  • Lindgard K, Stokkan KA, Le Maho Y, Groscolas R (1992) Protein utilization during starvation in fat and lean Svalbard ptarmigan (Lagopus mutus hyperboreus). J Comp Physiol 162B:607–613

    Google Scholar 

  • Linn R, Stuart SL (1976) The last chance diet. Lyle Stuart, Secaucus

    Google Scholar 

  • Love RM (1970) The chemical biology of fishes, vol 1. Academic Press, London

    Google Scholar 

  • Love RM (1980) The chemical biology of fishes, vol 2. Academic Press, London

    Google Scholar 

  • Lusk G (1909) The elements of the Science of nutrition. WB Saunders Company, Philadelphia

    Google Scholar 

  • Martin CJ, Robison R (1922) The minimum nitrogen expenditure of man and the biological value of various proteins for human nutrition. Biochem J 16(3):407–447

    PubMed  CAS  Google Scholar 

  • McCue MD (2007a) Snakes survive starvation by employing supply- and demand-side economic strategies. Zoology (Jena) 110(4):318–327

    Google Scholar 

  • McCue MD (2007b) Western diamondback rattlesnakes demonstrate physiological and biochemical strategies for tolerating prolonged starvation. Physiol Biochem Zool 80(1):25–34

    Article  PubMed  CAS  Google Scholar 

  • McCue MD (2010) Starvation physiology: reviewing the different strategies animals use to survive a common challenge. Comp Biochem Physiol 156A:1–18

    CAS  Google Scholar 

  • McFarlan JT, Bonen A, Guglielmo CG (2009) Seasonal upregulation of fatty acid transporters in flight muscles of migratory white throated sparrows (Zonotrichia albicollis). J Exp Biol 212:2934–2940

    Article  PubMed  CAS  Google Scholar 

  • McGuire LP, Guglielmo CG (2009) What can birds tell us about the migration physiology of bats? J Mammalogy 90(6):1290–1297

    Article  Google Scholar 

  • Mendez G, Weiser W (1993) Metabolic responses to food deprivation and refeeding in juveniles of Rutilis rutilis (Teleostei: Cyprinidae). Environ Biol Fishes 36:73–81

    Article  Google Scholar 

  • Mommsen TP, Vijayan MM, Moon TW (1999) Cortisol in teleosts: dynamics, mechanisms of action, and metabolic regulation. Rev Fish Biol Fish 9:211–268

    Article  Google Scholar 

  • Morgulis S (1923) Fasting and undernutrition. Dutton EP and Company, New York

    Google Scholar 

  • Navarro I, Gutiérrez J (1995) Fasting and starvation. In: Hochachka PW, Mommsen TP (eds) Biochemistry and molecular biology of fishes, vol 4. Elsevier, Amsterdam

    Google Scholar 

  • Nelson RA (1987) Black bears and polar bears–still metabolic marvels. Mayo Clin Proc 62:850–853

    PubMed  CAS  Google Scholar 

  • Oftedal OT (1993) The adaptation of milk secretion to the constraints of fasting in bears, seals, and baleen whales. J Dairy Sci 76:3234–3246

    Article  PubMed  CAS  Google Scholar 

  • Olivereau M, Olivereau JM (1997) Long-term starvation in the European eel: general effects and responses of pituitary growth hormone-(GH) and somatolactin-(SL) secreting cells. Fish Physiol Biochem 17:261–269

    Article  CAS  Google Scholar 

  • Ott BD, Secor SM (2006) Adaptive regulation of digestive performance in the genus Python. J Exp Biol 210:340–356

    Article  Google Scholar 

  • Overgaard J, Busk M, Hicks FB, Jensen FB, Wang T (1999) Respiratory consequences of feeding in the snake Python molurus. Comp Biochem Physiol 124A:359–365

    CAS  Google Scholar 

  • Owen OE, Felig P, Morgan AP, Wahren J, Cahill GF (1969) Liver and kidney metabolism during prolonged starvation. J Clin Invest 48:574–583

    Article  PubMed  CAS  Google Scholar 

  • Owen OE, Morgan AP, Kemp HG, Sullivan JM, Herrera MG, Cahill GF (1967) Brain metabolism during fasting. J Clin Invest 46:1589–1595

    Article  PubMed  CAS  Google Scholar 

  • Pelsers MM, Butler PJ, Bishop CM, Glatz JF (1999) Fatty acid binding protein in heart and skeletal muscles of the migratory barnacle goose throughout development. Am J Physiol 276(Pt 2):R637–R643

    PubMed  CAS  Google Scholar 

  • Pembrey MS, Spriggs EI (1904) The influence of fasting and feeding upon the respiratory and nitrogenous exchange. J Physiol (London) 183:377–395

    Google Scholar 

  • Peret J, Jacquot R (1972) Nitrogen excretion on complete fasting and on a nitrogen-free diet-endogeneous nitrogen. In: Bigwood EJ (ed) International Encyclopaedia of food and nutrition, vol 11. Pergamon Press, Oxford, Protein and amino acid functions

    Google Scholar 

  • Peterson BC, Small BC (2004) Effects of fasting on circulating IGF binding proteins, glucose, and cortisol in channel catfish (Ictalurus punctatus). Dom Anim Endocrinol 26:231–240

    Article  CAS  Google Scholar 

  • Phillips VW, Ashworth US, Brody S (1932) Growth and development. With special reference to domestic animals. XXV. The course of energy and nitrogen metabolism in the domestic fowl during 48-day fasts. With special reference to temperament and training of the birds. Notes on 60-day fasts in swine. Univ Missouri Agric Exp Sta Res Bull 179:5–30

    Google Scholar 

  • Piersma T, Hoekstra R, Dekinga A, Koolhaas A, Wolf P, Battley PF, Piersma P (1993) Scale and intensity of intertidal habitat use by Knots Calidris canutus in the western Wadden Sea in relation to food, friends and foes. Neth J Sea Res 31:331–357

    Article  Google Scholar 

  • Piersma T, Lindström A (1997) Rapid reversible changes in organ size as a component of adaptive behaviour. Trends Ecol Evol 12(4):134–138

    Article  PubMed  CAS  Google Scholar 

  • Polakof S, Arjona FJ, Sangiao-Alvarellos S, Martín del Río MP, Mancera JM, Soengas JL (2006) Food deprivation alters osmoregulatory and metabolic responses to salinity acclimation in gilthead sea bream.Sparus auratus. J Comp Physiol 176 B(5):441-452

    Google Scholar 

  • Powell-Tuck J (2007) Nutritional interventions in critical illness. Proc Nutr Soc 66(1):16–24

    Article  PubMed  CAS  Google Scholar 

  • Price ER (2010) Dietary lipid composition and avian migratory flight performance: development of a theoretical framework for avian fat storage. Comp Biochem Physiol A Mol Integr Physiol 157(4):297–309

    Article  PubMed  CAS  Google Scholar 

  • Price ER, Guglielmo CG (2009) The effect of muscle phospholipid fatty acid composition on exercise performance: a direct test in the migratory white-throated sparrow (Zonotrichia albicollis). Am J Physiol Regul Integr Comp Physiol 297(3):R775–R782

    Article  PubMed  CAS  Google Scholar 

  • Reilly JJ (1991) Adaptations to prolonged fasting in free-living weaned gray seal pups. Am J Physiol 260:R267–R272

    PubMed  CAS  Google Scholar 

  • Rigaud D, Hassid J, Meulemans A, Poupard AT, Boulier A (2000) A paradoxical increase in resting energy expenditure in malnourished patients near death: the king penguin syndrome. Am J Clin Nutr 72:355–360

    PubMed  CAS  Google Scholar 

  • Robin J-P, Cherel Y, Girard H, Geloen A, Le Maho Y (1987) Uric acid and urea in relation to protein catabolism in long-term fasting geese. J Comp Physiol 157B:491–499

    Google Scholar 

  • Robin JP, Decrock F, Herzberg G, Mioskowski E, Le Maho Y, Bach A, Groscolas R (2008) Restoration of body energy reserves during refeeding in rats is dependent on both the intensity of energy restriction and the metabolic status at the onset of refeeding. J Nutr 138(5):861–866

    PubMed  CAS  Google Scholar 

  • Robin J-P, Frain M, Sardet C, Groscolas R, Le Maho Y (1988) Protein and lipid utilization during long-term fasting in emperor penguins. Am J Physiol 254:R61–R68

    PubMed  CAS  Google Scholar 

  • Robin J-P, Boucontet L, Chillet P, Groscolas R (1998) Behavioral changes in fasting emperor penguins: evidence for a ‘‘refeeding signal’’ linked to a metabolic shift. Am J Physiol Regul Integr Comp Physiol 274:R746–R753

    CAS  Google Scholar 

  • Rubner M (1881) Ueber den Stoffverbrauch im hungernden pflanzer fresser. Ztschr Biol 27:214–238

    Google Scholar 

  • Ruderman NB, Aoki TT, Cahill GF (1976) Gluconeogenesis and its disorders in man. In: Hanson RW, Mehlman MA (eds) Gluconeogenesis: its regulation in mammalian species. Wiley, New York

    Google Scholar 

  • Runcie J, Thomson TJ (1970) Prolonged starvation-A dangerous procedure? Brit M J 3:432–435

    Article  PubMed  CAS  Google Scholar 

  • Samuels LT, Gilmore RC, Reinecke RM (1948) The effect of previous diet on the ability of animals to do work during subsequent fasting. J Nutr 36:639–641

    PubMed  CAS  Google Scholar 

  • Saudek CD, Félig P (1974) The metabolic events of starvation. Am J Med 60:117–126

    Article  Google Scholar 

  • Schnitker MA (1946) A study of malnutrition in Japanese prisoners of war. J Mil Med Pac 2(3):3–19

    PubMed  CAS  Google Scholar 

  • Schnitker MA, Mattman PE, Bliss TL (1951) A clinical study of malnutrition in Japanese prisoners of war. Ann Int Med 35(1):69–96

    PubMed  CAS  Google Scholar 

  • Schimanski H (1879) Der inanitions- und fieberstoffwechsel der hühner. Ztschr f physiol Chemie III:396–421

    Google Scholar 

  • Schultz CH (1844) Ueber den zustand des blutes in einem verhungernten protens sowie in verhungerten katzen und kaninchen. Beitr Physiol pathol Chem u mikrosc In Anw a.d. prakt Med 1:567–571

    Google Scholar 

  • Secor SM (2003) Gastric function and its contribution to the postprandial metabolic response of the Burmese python, Python molurus. J Exp Biol 206:1621–1630

    Article  PubMed  Google Scholar 

  • Secor SM (2008) Digestive physiology of the Burmese python: broad regulation of integrated performance. J Exp Biol 211(Pt 24):3767–3774

    Article  PubMed  Google Scholar 

  • Secor SM, Diamond J (1995) Adaptive responses to feeding in Burmese pythons: pay before pumping. J Exp Biol 198:1313–1325

    PubMed  CAS  Google Scholar 

  • Secor SM, Diamond J (1997) Effects of meal size on postprandial responses in juvenile Burmese pythons (Python molurus). Am J Physiol 272:R902–R912

    PubMed  CAS  Google Scholar 

  • Secor SM, Whang EE, Lane JS, Ashley SW, Diamond J (2000) Luminal and systemic signals trigger intestinal adaptation in the juvenile python. Am J Physiol 279:G1177–G1187

    CAS  Google Scholar 

  • Secor SM, Lignot JH (2010) Morphological plasticity of vertebrate aestivation. Prog Mol Subcell Biol 49:183–208

    Article  PubMed  Google Scholar 

  • Shimeno S, Shikata T, Hosokawa H, Masumoto T, Kheyyali D (1997) Metabolic response to feeding rates in common carp, Cyprinus carpio. Aquaculture 151:371–377

    Article  CAS  Google Scholar 

  • Spée M, Beaulieu M, Dervaux A, Chastel O, Le Maho Y, Raclot T (2010) Should I stay or should I go? Hormonal control of nest abandonment in a long-lived bird, the Adelie penguin. Horm Behav 58(5):762–768

    Article  PubMed  CAS  Google Scholar 

  • Spée M, Marchal L, Thierry AM, Chastel O, Enstipp M, Le Maho Y, Beaulieu M, Raclot T (2011) Exogenous corticosterone mimics a late fasting stage in captive Adelie penguins (Pygoscelis adeliae). Am J Physiol 300(5):R1241–R1249

    Article  CAS  Google Scholar 

  • Spencer IOB (1968) Death during therapeutic starvation for obesity. Lancet 1:1288–1290

    Article  PubMed  CAS  Google Scholar 

  • Starck JM, Beese K (2001) Strucural flexibility of the intestine of Burmese python in response to feeding. J Exp Biol 204:325–335

    PubMed  CAS  Google Scholar 

  • Starck JM, Beese K (2002) Structural flexibility of the small intestine and liver of garter snakes in response to feeding and fasting. J Exp Biol 205:1377–1388

    PubMed  Google Scholar 

  • Starck JM, Wimmer C (2005) Pattern of blood flow during the postprandial response in ball pythons, Python regius. J Exp Biol 208:881–889

    Article  PubMed  Google Scholar 

  • Stillman IW, Baker SS (1967) The doctor’s quick weight loss diet. Prentice-Hall, Englewood Cliffs, 204 p

    Google Scholar 

  • Thouzeau C, Le Maho Y, Larue-Achagiotis C (1995) Refeeding in fasted rats: dietary self-selection according to metabolic status. Physiol Behav 158(6):1051–1058

    Article  Google Scholar 

  • Van Itallie TB, Yang M-U (1984) Cardiac dysfunction in obese dieters: a potential lethal complication of rapid, massive weight loss. Am J Clin Nutr 39:695–702

    PubMed  Google Scholar 

  • Voit E (1866) Ueber die verschiedenheiten der eiweisszersetzung beim hungern. Ztschr Biol 2:307–365

    Google Scholar 

  • Voit E (1901) Die Grösse des Eiwesszerfalles im hunger. Ztschr Biol 41:167–195

    CAS  Google Scholar 

  • Wang T, Hung CCY, Randall DJ (2006) The comparative physiology of food deprivation: from feast to famine. Ann Rev Physiol 68:231–251

    Article  CAS  Google Scholar 

  • Weatherly AH, Gill HS (1987) The Biology of Fish Growth. Academic Press, London

    Google Scholar 

  • Wendelaar Bonga SE (1997) The stress response in fish. Physiol Rev 77(3):591–625

    PubMed  CAS  Google Scholar 

  • Wikelski M, Thom C (2000) Marine iguanas shrink to survive El Niño. Nature 403(6765):37–38

    Article  PubMed  CAS  Google Scholar 

  • Wilder RM (1921) The effects of ketonemia on the course of epilepsy. Mayo Clin Proc 2:307–308

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Hervé Lignot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lignot, JH., LeMaho, Y. (2012). A History of Modern Research into Fasting, Starvation, and Inanition. In: McCue, M. (eds) Comparative Physiology of Fasting, Starvation, and Food Limitation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29056-5_2

Download citation

Publish with us

Policies and ethics