Skip to main content

Thermoregulatory Adaptations to Starvation in Birds

  • Chapter
  • First Online:
Comparative Physiology of Fasting, Starvation, and Food Limitation

Abstract

Birds have body temperatures that are typically higher than those of mammals, and thus spend a large proportion of their total energy budget maintaining these temperatures—particularly in cold environments. Birds also have high surface to volume ratios and comparatively small energy reserves causing additional energetic challenges during periods of food limitation or complete starvation. During starvation, energy can be saved if the need for active thermogenesis can be reduced. Such a hypometabolic state can be achieved by reducing body temperature in a regulated manner or by increasing thermal insulation, or by employing both of these mechanisms. Adaptive changes in heat loss (thermal conductance) is well known among birds, but a growing number of studies are documenting how birds are able to conserve limited energy by reducing body temperature in a regulated manner. Rest-phase hypothermia and shallow torpor involve decreases in body temperature ranging from 1 to 10°C, with the birds retaining responsiveness to the environment, whereas deep torpor is characterized by a larger decrease, with body temperatures often approaching ambient temperature and resulting in true torpidity. Starvation is well known to induce deep torpor in some avian groups, notably hummingbirds and swifts; however, recent studies show that basically all avian groups can save energy during starvation by entering shallow torpor during the rest-phase of their daily cycle. So far, such responses have been found in at least 29 avian families. This chapter reviews our current understanding of how birds alter their thermoregulatory patterns in the face of starvation and underscores the need to: (1) investigate the neurohumoral responses underlying hypothermia and (2) better quantify the energy savings ensuing from small decreases in body temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aschoff J (1981) The 24-hour-rhythm of body temperature in birds as a function of body weight. J Orn 122:129–152

    Article  Google Scholar 

  • Astheimer LB, Buttemer WA, Wingfield JC (1992) Interactions of corticosterone with feeding, activity and metabolism in passerine birds. Ornis Scand 23:355–365

    Article  Google Scholar 

  • Bech C, Abe AS, Steffensen JF, Berger M, Bicudo JEPW (1997) Torpor in three species of Brazilian hummingbirds under semi-natural conditions. Condor 99:780–788

    Article  Google Scholar 

  • Bech C, Praesteng KE (2004) Thermoregulatory use of heat increment of feeding in the tawny owl (Strix aluco). J Therm Biol 29:649–654

    Article  Google Scholar 

  • Ben-Hamo M, Pinshow B, McCue MD, McWilliams SR, Bauchinger U (2010) Fasting triggers hypothermia, and ambient temperature modulates its depth in Japanese quail Coturnix japonica. Comp Biochem Physiol A 156:84–91

    Article  Google Scholar 

  • Blem CR (1976) Patterns of lipid storage and utilization in birds. Am Zool 16:671–684

    CAS  Google Scholar 

  • Boismenu C, Gauthier G, Larochelle J (1992) Physiology of prolonged fasting in greater snow geese (Chen caerulescens atlantica). Auk 109:511–521

    Google Scholar 

  • Brigham M (1992) Daily torpor in a free-ranging goatsucker, the common poorwill (Phalaenoptilus nuttallii). Physiol Zool 65:457–472

    Google Scholar 

  • Brigham RM, Körtner G, Maddocks TA, Geiser F (2000) Seasonal use of torpor by free-ranging Australian owlet-nightjars (Aegotheles cristatus). Physiol Biochem Zool 73:613–620

    Article  PubMed  CAS  Google Scholar 

  • Broggi J, Orell M, Hohtola E, Nilson JA (2004) Metabolic response to temperature variation in the great tit: an interpopulation comparison. J Anim Ecol 73:967–972

    Article  Google Scholar 

  • Butler PJ, Woakes AJ (2001) Seasonal hypothermia in a large migrating bird: saving energy for fat deposition? J Exp Biol 204:1361–1367

    PubMed  CAS  Google Scholar 

  • Carpenter FL, Hixon MA (1988) A new function of torpor: fat conservation in a wild migrating hummingbird. Condor 90:373–378

    Article  Google Scholar 

  • Chaplin SB, Diesel DA, Kasparie JA (1984) Body temperature regulation in red-tailed hawks and great horned owls: responses to air temperature and food deprivation. Condor 86:175–181

    Article  Google Scholar 

  • Cherel Y, Le Maho Y (1985) Five months of fasting in king penguin chicks: body mass loss and fuel metabolism. Am J Physiol 249:R387–R392

    PubMed  CAS  Google Scholar 

  • Cherel Y, Robin JP, Le Maho Y (1988) Physiology and biochemistry of long-term fasting in birds. Can J Zool 66:159–166

    Article  CAS  Google Scholar 

  • Chossat C (1843) Recherches expĂ©rimentales sur l’inanition. Impremerie Royale, Paris

    Google Scholar 

  • Dewasmes G, Buchet C, Loen A G, Le Maho Y (1989) Sleep changes in emperor penguins during fasting. Am J Physiol 256:R476–R480

    PubMed  CAS  Google Scholar 

  • Doucette LI, Brigham RM, Pavey CR, Geiser F (2012) Prey availability affects daily torpor by free-ranging Australian owlet-nightjars (Aegotheles cristatus). Oecologia. doi:10.1007/s00442-011-2214-7

  • Downs CT, Brown M (2002) Nocturnal heterothermy and torpor in the malachite sunbird (Nectarinia famosa). Auk 119:251–260

    Google Scholar 

  • Eichhorn G, Groscolas R, Le Glaunec G, Parisel C, Arnold L, Medina P, Handrich Y (2011) Heterothermy in growing king penguins. Nat Commun 2:435

    Article  PubMed  Google Scholar 

  • Ekimova IV (2005) Thermoregulation in the pigeon Columbia livia during the stress produced by food deprivation. J Evol Biochem Physiol 41:78–86

    Article  Google Scholar 

  • Fahlman A, Schmidt A, Handrich Y, Woakes AJ, Butler PJ (2005) Metabolism and thermoregulation during fasting in king penguins, Aptenodytes patagonicus, in air and water. Am J Physiol Reg Int Comp Physiol 289:R670–R679

    Article  CAS  Google Scholar 

  • Geiser F (2008) Ontogeny and phylogeny of endothermy and torpor in mammals and birds. Comp Biochem Physiol A 150:176–180

    Article  Google Scholar 

  • Geiser F, Körtner G, Schmidt I (1998) Leptin increases energy expenditure of a marsupial by inhibition of daily torpor. Am J Physiol Reg Int Comp Physiol 44:R1627–R1632

    Google Scholar 

  • Graf R, Krishna S, Heller HC (1989) Regulated nocturnal hypothermia induced in pigeons by food deprivation. Am J Physiol Reg Int Comp Physiol 256:R733–R738

    CAS  Google Scholar 

  • Grubb TC Jr, Pravosudov VV (1994) Toward a general theory of energy management in wintering birds. J Avian Biol 25:255–260

    Article  Google Scholar 

  • Hainsworth FR, Collins BG, Wolf LL (1977) The function of torpor in hummingbirds. Physiol Zool 50:215–222

    Google Scholar 

  • Heller HC, Ruby NF (2004) Sleep and circadian rhythms in mammalian torpor. Annu Rev Physiol 66:275–289

    Article  PubMed  CAS  Google Scholar 

  • Hiebert SM (1990) Energy costs and temporal organization of torpor in the rufous hummingbird (Selasphorus rufus). Physiol Zool 63:1082–1097

    Google Scholar 

  • Hiebert SM (1991) Seasonal differences in the response of rufous hummingbirds to food restriction: body mass and the use of torpor. Condor 93:526–537

    Article  Google Scholar 

  • Hohtola E, Henderson RP, Rashotte ME (1998) Shivering thermogenesis in the pigeon: the effects of activity, diurnal factors, and feeding state. Am J Physiol 275:R1553–R1562

    PubMed  CAS  Google Scholar 

  • Hohtola E, Hissa R, Pyörnilä A, Rintamäki H, Saarela S (1991) Nocturnal hypothermia in fasting Japanese quail: the effect of ambient temperature. Physiol Behav 49:563–567

    Article  PubMed  CAS  Google Scholar 

  • Hohtola E, Pyörnilä A, Rintamäki H (1994) Fasting endurance and cold resistance without hypothermia in a small predatory bird—the metabolic strategy of Tengmalm’s Owl, Aegolius funereus. J Comp Physiol B 164:430–437

    Article  Google Scholar 

  • Hohtola E, Rintamäki H, Hissa R (1980) Shivering and ptiloerection as complementary cold defense responses in the pigeon during sleep and wakefulness. J Comp Physiol B 136:77–81

    Article  Google Scholar 

  • Hutchinson JMC, McNamara JM, Cuthill IC (1993) Song, sexual selection, starvation and strategic handicaps. Anim Behav 45:1153–1177

    Article  Google Scholar 

  • Irving L, Krog J (1954) Body temperatures of arctic and subarctic birds and mammals. J Appl Physiol 6:667–680

    PubMed  CAS  Google Scholar 

  • Jaeger E (1948) Does the poorwill “hibernate”? Condor 50:45–46

    Google Scholar 

  • Jaeger EC (1949) Further observations on the hibernation of the poor-will. Condor 51:105–109

    Article  Google Scholar 

  • Jensen C, Bech C (1992) Ventilation and gas exchange during shallow hypothermia in pigeons. J Exp Biol 165:111–120

    Google Scholar 

  • Kaseloo PA, Lovvorn JR (2003) Heat increment of feeding and thermal substitution in mallard ducks feeding voluntarily on grain. J Comp Physiol B 173:207–213

    PubMed  CAS  Google Scholar 

  • Koskimies J (1950) The life of the swift, Micropus apus (L.), in relation to the weather. Ann Acad Sci Fenn Ser A 15:1–151

    Google Scholar 

  • Koubi HE, Robin JP, Dewasmes G, Le Maho Y, Frutoso J, Minaire Y (1991) Fasting-induced rise in locomotor activity in rats coincides with increased protein utilization. Physiol Behav 50:337–343

    Article  PubMed  CAS  Google Scholar 

  • Körtner G, Brigham RM, Geiser F (2000) Winter torpor in a large bird. Nature 407:318

    PubMed  Google Scholar 

  • Körtner G, Geiser F (2000) The temporal organization of daily torpor and hibernation: circadian and circannual rhythms. Chronobiol Int 17:103–128

    Article  PubMed  Google Scholar 

  • Lane JE, Brigham RM, Swanson DL (2004) Daily torpor in free-ranging whip-poor-wills (Caprimulgus vociferus). Physiol Biochem Zool 77:297–304

    Article  PubMed  Google Scholar 

  • Laurila M, Hohtola E (2005) The effect of ambient temperature and simulated predation risk on fasting-induced nocturnal hypothermia of pigeons in outdoor conditions. J Therm Biol 30:392–399

    Article  Google Scholar 

  • Laurila M, Pilto T, Hohtola E (2005) Testing the flexibility of fasting-induced hypometabolism in birds: effect of photoperiod and repeated food deprivations. J Therm Biol 30:131–138

    Article  Google Scholar 

  • Le Maho Y (1983) Metabolic adaptations to long term fasting in Antarctic penguins and domestic geese. J Therm Biol 8:91–96

    Article  Google Scholar 

  • Marjoniemi K (2000) The effect of short-term fasting on shivering thermogenesis in Japanese quail chicks (Coturnix coturnix japonica): indications for a significant role of diet-induced/growth related thermogenesis. J Therm Biol 25:459–465

    Article  PubMed  Google Scholar 

  • McCue MD (2006) Specific dynamic action: a century of investigation. Comp Biochem Physiol A 144:381–394

    Article  CAS  Google Scholar 

  • McCue MD (2010) Starvation physiology: reviewing the different strategies animals use to survive a common challenge. Comp Biochem Physiol A 156:1–18

    Google Scholar 

  • McKechnie AE, Ashdown RAM, Christian MB, Brigham RM (2007) Torpor in an African caprimulgid, the freckled nightjar Caprimulgus tristigma. J Avian Biol 38:261–266

    Google Scholar 

  • McKechnie AE, Lovegrove BG (1999) Circadian metabolic responses to food deprivation in the Black-shouldered kite. Condor 101:426–432

    Article  Google Scholar 

  • McKechnie AE, Lovegrove BG (2001a) Heterothermic responses in the speckled mousebird (Colius striatus). J Comp Physiol B 171:507–518

    Article  PubMed  CAS  Google Scholar 

  • McKechnie AE, Lovegrove BG (2001b) Thermoregulation and the energetic significance of clustering behavior in the white-backed mousebird (Colius colius). Physiol Biochem Zool 74:238–249

    Article  PubMed  CAS  Google Scholar 

  • McKechnie AE, Lovegrove BG (2002) Avian facultative hypothermic responses: a review. Condor 104:705–724

    Article  Google Scholar 

  • Nagy KA (2005) Field metabolic rate and body size. J Exp Biol 208:1621–1625

    Article  PubMed  Google Scholar 

  • Ostheim J (1992) Coping with food-limited conditions: feeding behavior, temperature preference, and nocturnal hypothermia in pigeons. Physiol Behav 51:353–361

    Article  PubMed  CAS  Google Scholar 

  • Peiponen V (1966) The diurnal heterothermy of the Nightjar (Caprimulgus europaeus L.). Ann Acad Sci Fenn Ser A 101:1–35

    Google Scholar 

  • Peters RH (1983) The ecological implications of body size. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Petherick JC, Waddington D (1991) Can domestic fowl (Gallus gallus domesticus) anticipate a period of food deprivation? Appl Anim Behav Sci 32:219–226

    Article  Google Scholar 

  • Phillips DL, Rashotte ME, Henderson RP (1991) Energetic responses of pigeons during food deprivation and restricted feeding. Physiol Behav 50:195–203

    Article  PubMed  CAS  Google Scholar 

  • Phillips NH, Berger RJ (1991) Regulation of body temperature, metabolic rate, and sleep in fasting pigeons diurnally infused with glucose or saline. J Comp Physiol B 161:311–318

    Article  PubMed  CAS  Google Scholar 

  • Prinzinger R, Pressmar A, Schleucher E (1991) Body temperature in birds. Comp Biochem Physiol A 99:499–506

    Article  Google Scholar 

  • Prinzinger R, Schleucher E, Pressmar A (1992) Long-term telemetry of body temperature with synchronous measurement of metabolic rate in torpid and non-torpid blue-naped mousebirds (Urocolius macrourus). J Orn 133:446–450

    Article  Google Scholar 

  • Prinzinger R, Siedle K (1988) Ontogeny of metabolism, thermoregulation and torpor in the house martin Delichon urbica urbica (L.) and its ecological significance. Oecologia 76:307–312

    Article  Google Scholar 

  • Rashotte ME, Basco PS, Henderson RP (1995) Daily cycles in body temperature, metabolic rate, and substrate utilization in pigeons: influence of amount and timing of food consumption. Physiol Behav 57:731–746

    Article  PubMed  CAS  Google Scholar 

  • Rashotte ME, Geran LC (1997) Participation of gastrointestinal-load volume in “setting” the pigeon’s nocturnal body temperature. Naturwissenschaften 84:350–353

    Article  Google Scholar 

  • Rashotte ME, Pastukhov IF, Poliakov EL, Henderson RP (1998) Vigilance states and body temperature during the circadian cycle in fed and fasted pigeons (Columba livia). Am J Physiol Reg Int Comp Physiol 275:R1690–R1702

    CAS  Google Scholar 

  • Rashotte ME, Saarela S, Henderson RP, Hohtola E (1999) Shivering and digestion-related thermogenesis in pigeons during dark phase. Am J Physiol Reg Int Comp Physiol 277:R1579–R1587

    CAS  Google Scholar 

  • Reinertsen RE (1996) Physiological and ecological aspects of hypothermia. In: Carey C (ed) Avian energetics and nutritional ecology. Chapman and Hall, New York, pp 125–157

    Chapter  Google Scholar 

  • Reinertsen RE, Bech C (1994) Hypothermia in pigeons: relating body temperature regulation to the gastrointestinal system. Naturwissenschaften 81:133–136

    Article  PubMed  CAS  Google Scholar 

  • Reinertsen RE, Haftorn S (1984) Effect of short-term fasting on metabolism and nocturnal hypothermia in the willow tit, Parus montanus. J Comp Physiol B 154:23–28

    Article  CAS  Google Scholar 

  • Reinertsen RE, Haftorn S (1986) Different metabolic strategies of northern birds for nocturnal survival. J Comp Physiol B 156:655–664

    Article  Google Scholar 

  • Sartori DRS, Migliorini RH, Veiga JAS, Moura JL, Kettelhut IC, Linder C (1995) Metabolic adaptations induced by long-term fasting in quails. Comp Biochem Physiol 111A:487–493

    Article  CAS  Google Scholar 

  • Schaub R, Prinzinger R, Schleucher E (1999) Energy metabolism and body temperature in the Blue-naped Mousebird (Urocolius macrourus) during torpor. Ornis Fenn 76:211–219

    Google Scholar 

  • Schleucher E (2004) Torpor in birds: taxonomy, energetics, and ecology. Physiol Biochem Zool 77:942–949

    Article  PubMed  Google Scholar 

  • Secor S (2009) Specific dynamic action: a review of the postprandial metabolic response. J Comp Physiol B 179:1–56

    Article  PubMed  Google Scholar 

  • Sherry DF, Mrosovsky N, Hogan JA (1980) Weight loss and anorexia during incubation in birds. J Comp Physiol Psychol 94:89–98

    Article  Google Scholar 

  • Sibley CG, Ahlquist JE (1990) Phylogeny and classification of birds: a study in molecular evolution. Yale University Press, New Haven

    Google Scholar 

  • Simon E (1974) Temperature regulation: the spinal cord as a site of extrahypothalamic thermoregulatory functions. Rev Physiol Biochem Pharmacol 71:2–76

    Google Scholar 

  • SpĂ©e M, Marchal L, Thierry A-M, Chastel O, Enstipp M, Maho YL, Beaulieu M, Raclot T (2011) Exogenous corticosterone mimics a late fasting stage in captive AdĂ©lie penguins (Pygoscelis adeliae). Am J Physiol Reg Int Comp Physiol 300:R1241–R1249

    Article  Google Scholar 

  • Steen J (1958) Climatic adaptation in some small Northern birds. Ecol 39:625–629

    Article  Google Scholar 

  • Stokkan KA (1992) Energetics and adaptations to cold in ptarmigan in winter. Ornis Scand 23:366–370

    Article  Google Scholar 

  • Sulkava S (1969) On small birds spending the night in snow. Aquilo Ser Zool 7:33–37

    Google Scholar 

  • Swoap SJ, Rathvon M, Gutilla M (2007) AMP does not induce torpor. Am J Physiol Reg Int Comp Physiol 293:R468–R473

    Article  CAS  Google Scholar 

  • Thouzeau C, Duchamp C, Handrich Y (1999) Energy metabolism and body temperature of barn owls fasting in the cold. Physiol Biochem Zool 72:170–178

    Article  PubMed  CAS  Google Scholar 

  • Underwood H, Steele CT, Zivkovic B (1999) Effects of fasting on the circadian body temperature rhythm of Japanese quail. Physiol Behav 66:137–143

    Article  PubMed  CAS  Google Scholar 

  • Walker LE, Walker JM, Palca JW, Berger RJ (1983) A continuum of sleep and shallow torpor in fasting doves. Science 221:194–195

    CAS  Google Scholar 

  • Wall JP, Cockrem JF (2009) Effects of corticosterone treatment on responses to fasting in Japanese quail. Comp Biochem Physiol A 154:211–215

    Google Scholar 

  • Wang T, Hung CCY, Randall DJ (2006) The comparative physiology of food deprivation: From feast to famine. Annu Rev Physiol 68:223–251

    Article  PubMed  Google Scholar 

  • Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW, Sato H, Messaddeq N, Harney JW, Ezaki O, Kodama T, Schoonjans K, Bianco AC, Auwerx J (2006) Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 439:484–489

    Article  PubMed  CAS  Google Scholar 

  • Welton NJ, Houston AI, Ekman J, McNamara JM (2002) A dynamic model of hypothermia as an adaptive response by small birds to winter conditions. Acta Biotheor 50:39–56

    Article  PubMed  CAS  Google Scholar 

  • Westman W, Geiser F (2004) The effect of metabolic fuel availability on thermoregulation and torpor in a marsupial hibernator. J Comp Physiol B 174:49–57

    Article  PubMed  CAS  Google Scholar 

  • Wojciechowski MS, Pinshow B (2009) Heterothermy in small, migrating passerine birds during stopover: use of hypothermia at rest accelerates fuel accumulation. J Exp Biol 212:3068–3075

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

I thank the Academy of Finland and Thule Institute, University of Oulu, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esa Hohtola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hohtola, E. (2012). Thermoregulatory Adaptations to Starvation in Birds. In: McCue, M. (eds) Comparative Physiology of Fasting, Starvation, and Food Limitation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29056-5_10

Download citation

Publish with us

Policies and ethics