Skip to main content

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 21))

  • 1302 Accesses

Abstract

The traditional rheological method is supplemented by a new element—rigid contact, which serves to take into account different resistance of a material to tension and compression. A rigid contact describes mechanical properties of an ideal granular material involving rigid particles for an uniaxial stress state. Combining it with elastic, plastic, and viscous elements, one can construct rheological models of different complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Badiche, X., Forest, S., Guibert, T., Bienvenu, Y., Bartout, J.D., Ienny, P., Croset, M., Bernet, H.: Mechanical properties and non-homogeneous deformation of open-cell nickel foams: application of the mechanics of cellular solids and of porous materials. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 289 (1–2), 276–288 (2000)

    Article  Google Scholar 

  2. Banhart, J., Baumeister, J.: Deformation characteristics of metal foams. J. Mater. Sci. 33 (6), 1431–1440 (1998)

    Article  CAS  Google Scholar 

  3. Biot, M.A.: Theory of finite deformations of porous solids. Indiana Univ. Math. J. 21, 597–735 (1972)

    Article  Google Scholar 

  4. Biot, M.A.: Nonlinear and semilinear rheology of porous solids. J. Geophys. Res. 78 (23), 4924–4937 (1973)

    Article  Google Scholar 

  5. de Boer, R.: Theory of Porous Media: Highlights in the Historical Development and Current State. Springer, New York (1999)

    Google Scholar 

  6. Borja, R.I.: Multiscale modeling of pore collapse instability in high-porosity solids. In: Soares, C.A.M., Martins, J.A.C., Rodrigues, H.C. (eds.) Computational Mechanics: Solids, Structures and Coupled Problems, pp. 165–172. Springer, Netherlands (2006)

    Google Scholar 

  7. Breuer, S., Onat, E.T.: On uniqueness in linear viscoelasticity. Q. Appl. Math. 19 (4), 355–359 (1962)

    Google Scholar 

  8. Bulavskii, V.A.: Metody Relaksaczii dlya Sistem Neravenstv (Relaxation Methods for Systems of Inequalities). Izd. Novosib. Univ., Novosibirsk (1981)

    Google Scholar 

  9. Bykovtsev, G.I., Ivlev, D.D.: Teoriya Plastichnosti (Plasticity Theory). Dal’nauka, Vladivostok (1998)

    Google Scholar 

  10. Carcione, J.M.: Viscoelastic effective rheologies for modeling wave propagation in porous media. Geophys. Prospect. 46, 249–270 (1998)

    Article  Google Scholar 

  11. Carroll, M.M., Holt, A.C.: Static and dynamic pore-collapse relations for ductile porous materials. J. Appl. Phys. 43, 1626–1636 (1972)

    Article  Google Scholar 

  12. Christensen, R.M.: Theory of Viscoelasticity, 2nd edn. Dover Publications Inc., Mineola (2010)

    Google Scholar 

  13. Cole, K.S., Cole, R.H.: Dispersion and absorption in dielectrics—I. Alternating current characteristics. J. Chem. Phys. 9, 341–351 (1941)

    Article  CAS  Google Scholar 

  14. Day, W.A.: The Thermodynamics of Simple Materials with Fading Memory, Springer Tracts in Natural Philosophy, vol. 22. Springer, New York (1972)

    Book  Google Scholar 

  15. Ehlers, W. (ed.): Theoretical and Numerical Methods in Continuum Mechanics of Porous Materials, Solid Mechanics and Its Applications. IUTAM Symposium. Kluwer Academic Publishers, Netherlands (2001)

    Google Scholar 

  16. Gibson, L.J.: Properties and applications of metal foams. In: Kelly, A., Zweben, C. (eds.) Comprehensive Composite Materials, Metal Matrix Composites. vol. 3, pp. 821–842. Pergamon Press, Oxford (2000)

    Google Scholar 

  17. Gibson, L.J., Ashby, M.F.: Cellular Solids: Structure and Properties. Cambridge Solid State Science Series. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  18. Gnoevoi, A.V., Klimov, D.M., Chesnokov, V.M.: Osnovy Teorii Techenii Bingamovskikh Sred (Foundations of the Theory of Flows of Bingham Media). Fizmatlit, Moscow (2004)

    Google Scholar 

  19. Green, R.J.: A plasticity theory for porous solids. Int. J. Mech. Sci. 14, 215–224 (1972)

    Article  Google Scholar 

  20. Nesterenko, V.F.: Dynamics of Heterogeneous Materials. Springer, New York (2001)

    Google Scholar 

  21. Rabotnov, Y.N.: Elements of Hereditary Solid Mechanics. Mir Publishers, Moscow (1980)

    Google Scholar 

  22. Reiner, M.: Deformation, Strain and Flow: an Elementary Introduction to Rheology. H. K. Lewis, London (1960)

    Google Scholar 

  23. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    Google Scholar 

  24. Sadovskaya, O.V., Sadovskii, V.M.: Rheological models of uniaxial deformation of porous media. Vestnik Krasnoyarsk. Univ.: Fiz.-Mat. Nauki 9, 202–206 (2006)

    Google Scholar 

  25. Sadovskaya, O.V., Sadovskii, V.M.: Models of rheologically compicated media with different resistances to tension and compression. In: Mathematical Models and Methods of Continuum Mechanics: Collected Papers, pp. 224–238. IAPU DVO RAN, Vladivostok (2007)

    Google Scholar 

  26. Sadovskii, V.M.: Numerical modeling in problems of the dynamics of granular media. In: Proceedings of the Mathematical Centre N. I. Lobachevskii, Izd. Kazansk. Mat. Obshhestva, Kazan, vol. 15, pp. 183–198 (2002)

    Google Scholar 

  27. Sadovskii, V.M.: To the theory of elastic-plastic waves propagation in granular materials. Doklady Phys. 47 (10), 747–749 (2002)

    Article  CAS  Google Scholar 

  28. Sadovskii, V.M.: Rheological models of hetero-modular and granular media. Dal’nevost. Mat. Zh. 4 (2), 252–263 (2003)

    Google Scholar 

  29. Sevostianov, I., Kachanov, M.: On the yield condition for anisotropic porous materials. Mater. Sci. Eng. A 313 (1–2), 1–15 (2001)

    Google Scholar 

  30. Vinogradov, G.V., Malkin, A.Y.: Rheology of Polymers. Springer, New York (1980)

    Google Scholar 

  31. Zintchenko, V.A., Sadovskaya, O.V., Sadovskii, V.M.: A numerical algorithm and a computer system for the analysis of rheological schemes. Numer. Methods Program. Adv. Computing 7 (2), 125–132 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oxana Sadovskaya .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sadovskaya, O., Sadovskii, V. (2012). Rheological Schemes. In: Mathematical Modeling in Mechanics of Granular Materials. Advanced Structured Materials, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29053-4_2

Download citation

Publish with us

Policies and ethics