Skip to main content

Physically Based Simulation of Solid Objects’ Burning

  • Conference paper
Book cover Transactions on Edutainment VII

Part of the book series: Lecture Notes in Computer Science ((TEDUTAIN,volume 7145))

Abstract

This paper presents a novel method for realistic simulation of solid objects’ burning. The temperature field is first constructed based on combustion theories. Then, a temperature field motivated interaction model (TFMI) is proposed to simulate the interactions between the fire and the objects during burning. In TFMI, the decomposition of the objects is modeled by improving the level set method and the spreading of fire is calculated using the updated temperature field at each time step. Our method can deal with varied topologies of different objects during burning. The fire is simulated by adopting stable fluid method and integrated into the whole burning scenes. Finally, various solid objects’ burning scenes are rendered automatically using the above model. The experiment results show the validity of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Reeves, W.T.: Particle Systems-a Technique for Modeling a Class of Fuzzy Objects. In: Proceedings of SIGGRAPH, pp. 359–376 (1983)

    Google Scholar 

  2. Pakeshi, A., Yuz, K., Nakajima, M.: Generating Two Dimensional Flame Images in Computer Graphics. IEICE Transactions 74(2), 457–462 (1991)

    Google Scholar 

  3. Hong, Y., Zhu, D., Qiu, X., Wang, Z.: Geometry-Based Control of Fire Simulation. The Visual Computer 26 (2010)

    Google Scholar 

  4. Rushmeier, H.E., Hamins, A., Choi, M.Y.: Volume rendering of pool fire data. In: Proceedings of IEEE Conference on Visualization, pp. 382–385 (1994)

    Google Scholar 

  5. Stam, J., Fiume, E.: Depicting Fire and Other Gaseous Phenomena Using Diffusion Processes. In: Proceedings of SIGGRAPH, pp. 129–136 (1995)

    Google Scholar 

  6. Nguyen, D., Fedkiw, R., Jensen, H.W.: Physically based modeling and animation of fire. In: Proceedings of SIGGRAPH, pp. 721–728 (2002)

    Google Scholar 

  7. Ishikawa, T., Miyazaki, R., Dobashi, Y., Nishita, T.: Visual simulation of spreading fire. In: Proceedings of NICOGRAPH International, pp. 43–48 (2005)

    Google Scholar 

  8. Hong, J., Shinar, T., Fedkiw. R.: Wrinkled flames and cellular patterns. In: Proceedings of SIGGRAPH, pp. 47.1–47.6 (2007)

    Google Scholar 

  9. Yngve, G.D., O’Brien, J.F., Hodgins, J.K.: Animating explosions. In: Proceedings of SIGGRAPH, pp. 29–36 (2000)

    Google Scholar 

  10. Feldman, B.E., O’Brien, J.F., Arikan, O.: Animating suspended particle explosions. ACM Transactions on Graphics 22(3), 708–715 (2003)

    Article  MATH  Google Scholar 

  11. Losasso, F., Irving, G., Guendelman, E., et al.: Melting and burning solids into liquids and gases. IEEE Transactions on Visualization and Computer Graphics 12(3), 343–352 (2006)

    Article  Google Scholar 

  12. Melek, Z., Keyser, J.: Interactive simulation of burning objects. In: Proceedings of Pacific Graphics, pp. 462–466 (2003)

    Google Scholar 

  13. Melek, Z., Keyser, J.: Driving object deformations from internal physical processes. In: Proceedings of the ACM Symposium on Solid and Physical Modeling, pp. 51–59 (2007)

    Google Scholar 

  14. Melek, Z., Keyser, J.: Bending burning matches and crumpling burning paper. In: Proceedings of SIGGRAPH Poster (2006)

    Google Scholar 

  15. Liu, S., Liu, Q., An, T., Sun, J., Peng, Q.: Physically based simulation of thin-shell objects’ burning. The Visual Computer 25(5-7), 687–696 (2009)

    Article  Google Scholar 

  16. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, New York (2002)

    Google Scholar 

  17. Fedkiw, R.: Geometric Level Set Methods in Imaging, Vision and Graphics. Springer, New York (2003)

    Google Scholar 

  18. Mitchell, I.M.: The flexible, extensible and efficient toolbox of level set methods. Journal of Scientific Computing 35(2-3), 300–329 (2007)

    Article  Google Scholar 

  19. Sethian, J.A.: Level Set Methods and Fast Marching Methods. Cambridge University Press, New York (1999)

    MATH  Google Scholar 

  20. Strain, J.: A fast modular semi-lagrangian method for moving interfaces. Journal of Computational Physics 161(2), 512–536 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sethian, J.: A fast marching level set method for monotonically advancing fronts. Proceedings of the National Academy of Sciences 93, 1591–1595 (1996)

    Google Scholar 

  22. Hugues, H., Tony, D., Tom, D., John, M., Werner, S.: Surface reconstruction from unorganized points. Computer Graphics 26(2), 71–78 (1992)

    Article  Google Scholar 

  23. Desbrun, M., Meyer, M., Schroder, P., Barr, A.H.: Implicit fairing of irregular meshes using diffusion and curvature flow. In: Proceeding of SIGGRAPH, pp. 317–324 (1999)

    Google Scholar 

  24. Ken, M., David, E.B., Ross, T.W., Alan, H.B.: Level set surface editing operators. In: Proceedings of SIGGRAPH, pp. 330–338 (2002)

    Google Scholar 

  25. Aanaes, H., Baerentzen, J.A.: Pseudo-normal for signed distance computation. In: Proceedings of Vision, Modeling and Visualization, pp. 407–413 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, S., An, T., Gong, Z., Hagiwara, I. (2012). Physically Based Simulation of Solid Objects’ Burning. In: Pan, Z., Cheok, A.D., Müller, W., Chang, M., Zhang, M. (eds) Transactions on Edutainment VII. Lecture Notes in Computer Science, vol 7145. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29050-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29050-3_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29049-7

  • Online ISBN: 978-3-642-29050-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics