Skip to main content

Temporal Pattern and Energy Cost of Migratory Flight

  • Chapter
  • First Online:
Passerine Migration
  • 649 Accesses

Abstract

I claim that the currently widely accepted concept that migratory take-offs occur within a narrow time window soon after the sunset is not generally correct. Observation and radio-tracking data show that in a number of songbird migrants departures occur well into the night. The body mass and fuel stores of departing migrants vary broadly; a substantial proportion of birds take off with low fuel stores that do not allow them to fly throughout the night. Some migrants perform reverse migration during the night; however, others probably make short flights in the seasonally appropriate migratory direction. Our field data on the body mass loss during the flights support the recent wind tunnel measurements that suggest that migratory flight in long-distance migrants is significantly less expensive than was hitherto assumed: some 6–7 times basal metabolic rate (BMR), not 10–12 times BMR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Able KP (1982) Skylight polarization patterns at dusk influence migratory orientation in birds. Nature 299:550–551

    Article  Google Scholar 

  • Able KP (1989) Skylight polarization and the orientation of migratory birds. J Exp Biol 141:241–256

    Google Scholar 

  • Able KP (1993) Orientation cues used by migratory birds: a review of cue-conflict experiments. Trends Ecol Evol 8:367–371

    Article  PubMed  CAS  Google Scholar 

  • Agatsuma R, Ramenofsky M (2006) Migratory behaviour of captive white-crowned sparrows, Zonotrichia leucophrys gambelii, differs during autumn and spring migration. Behaviour 143:1219–1240

    Article  Google Scholar 

  • Åkesson S (1999) Do passerine migrants captured at an inland site perform temporary reverse migration in autumn? Ardea 87:129–137

    Google Scholar 

  • Åkesson S, Hedenström A (2000) Wind selectivity of migratory flight departures in birds. Behav Ecol Sociobiol 47:140–144

    Article  Google Scholar 

  • Åkesson S, Alerstam T, Hedenström A (1996a) Flight initiation of nocturnal passerine migrants in relation to celestial orientation conditions at twilight. J Avian Biol 27:95–102

    Article  Google Scholar 

  • Åkesson S, Karlsson L, Walinder G, Alerstam T (1996b) Bimodal orientation and the occurrence of temporary reverse bird migration during autumn in south Scandinavia. Behav Ecol Sociobiol 38:293–302

    Article  Google Scholar 

  • Åkesson S, Walinder G, Karlsson L, Ehnbom S (2001) Reed warbler orientation: initiation of nocturnal migratory flights in relation to visibility of celestial cues at dusk. Anim Behav 61:181–189

    Article  PubMed  Google Scholar 

  • Åkesson S, Walinder G, Karlsson L, Ehnbom S (2002) Nocturnal migratory flight initiation in reed warblers Acrocephalus scirpaceus: effect of wind on orientation and timing of migration. J Avian Biol 33:349–357

    Article  Google Scholar 

  • Alerstam T (1976) Nocturnal migration of thrushes (Turdus spp.) in southern Sweden. Oikos 27:457–475

    Article  Google Scholar 

  • Alerstam T (1990) Bird migration. Cambridge University Press, Cambridge

    Google Scholar 

  • Berthold P (2001) Bird migration: a general survey, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Biebach H (1985) Sahara stopover in migratory flycatchers: fat and food affect the time program. Experientia 41:695–697

    Article  Google Scholar 

  • Biebach H (1996) Energetics of winter and migratory fattening. In: Carey C (ed) Avian energetics and nutritional ecology. Chapman & Hall, NY

    Google Scholar 

  • Blem CR (1990) Avian energy storage. In: Power DM (ed) Current ornithology, vol 7. Plenum Press, NY

    Google Scholar 

  • Bolshakov CV (1981) Rekonstruktsiya polnoy kartiny nochnogo prolyota i effektivnost’ obnaruzheniya ego raznymi metodami (Reconstruction of the total picture of nocturnal passage and effectiveness of several methods of its estimation). Proc Zool Inst 104:95–123

    Google Scholar 

  • Bolshakov CV (1992) Vechernie peremescheniya i start nochnogo migratsionnogo poleta u drozda-ryabinnika (Turdus pilaris): predvaritelnye rezultaty (Evening movements and the start of the nocturnal migratory flight in the fieldfare (Turdus pilaris): preliminary results). Proc Zool Inst 247:18–42

    Google Scholar 

  • Bolshakov CV, Bulyuk VN (1999) Time of nocturnal flight initiation (take-off activity) in the European Robin Erithacus rubecula during spring migration: direct observations between sunset and sunrise. Avian Ecol Behav 2:51–74

    Google Scholar 

  • Bolshakov CV, Bulyuk VN (2001) New comprehensive systematic data concerning the time of nocturnal departure in some passerine migrants in autumn. Ring 23:131–137

    Google Scholar 

  • Bolshakov CV, Chernetsov N (2004) Initiation of nocturnal flight in two species of long-distance migrants (Ficedula hypoleuca and Acrocephalus schoenobaenus) in spring: a telemetry study. Avian Ecol Behav 12:63–76

    Google Scholar 

  • Bolshakov CV, Rezvyi SP (1998) Time of nocturnal flight initiation (take-off activity) in the European Robin Erithacus rubecula during spring migration: visual observations between sunset and darkness. Avian Ecol Behav 1:37–49

    Google Scholar 

  • Bolshakov CV, Bulyuk VN, Sinelschikova A (2000) Study of nocturnal departures in small passerine migrants: retrapping of ringed birds in high mist-nets. Vogelwarte 40:250–258

    Google Scholar 

  • Bolshakov CV, Shapoval AP, Zelenova NP (2001) Results of bird trapping and ringing by the Biological Station ‘‘Rybachy’’ on the Courish Spit: long-distance recoveries of birds ringed in 1956–1997. Part 1. Avian Ecol Behav (Suppl 1):1–126

    Google Scholar 

  • Bolshakov CV, Shapoval AP, Zelenova NP (2002a) Results of bird trapping and ringing by the Biological Station ‘‘Rybachy’’ on the Courish Spit: controls of birds ringed outside the Courish Spit in 1956–1997. Part 1. Avian Ecol Behav (Suppl 5):1–106

    Google Scholar 

  • Bolshakov CV, Švažas S, Žalakevičius M (2002b) Nocturnal migration of thrushes in the Eastern Baltic region. Akstis, Vilnius

    Google Scholar 

  • Bolshakov C, Bulyuk V, Chernetsov N (2003a) Spring nocturnal migration of Reed Warblers Acrocephalus scirpaceus: departure, landing and body condition. Ibis 145:106–112

    Article  Google Scholar 

  • Bolshakov CV, Bulyuk VN, Mukhin A, Chernetsov N (2003b) Body mass and fat reserves of Sedge Warblers during vernal nocturnal migration: departure versus arrival. J Field Ornithol 74:81–89

    Google Scholar 

  • Bolshakov CV, Chernetsov N, Mukhin A, Bulyuk VN, Kosarev V, Ktitorov P, Leoke D, Tsvey A (2007) Time of nocturnal departures in European robins, Erithacus rubecula, in relation to celestial cues, season, stopover duration and fat stores. Anim Behav 74:855–865

    Article  Google Scholar 

  • Bowlin MS, Wikelski M (2008) Pointed wings, low wing loading and clam air reduce migratory flight costs in songbirds. PLoS ONE 3:e2154

    Article  PubMed  Google Scholar 

  • Bulyuk VN (2006) At what time of the day do passerine nocturnal migrants arrive at their breeding sites? Ardea 94:132–139

    Google Scholar 

  • Bulyuk V, Chernetsov N (2000) Two migratory flights of sedge warblers Acrocephalus schoenobaenus from Finland to Estonia. Ornis Svecica 10:79–83

    Google Scholar 

  • Bulyuk VN, Mukhin A, Fedorov VA, Tsvey A, Kishkinev D (2000) Juvenile dispersal in Reed Warblers Acrocephalus scirpaceus at night. Avian Ecol Behav 5:45–63

    Google Scholar 

  • Bulyuk VN, Tsvey A (2006) Timing of nocturnal autumn migratory departures in juvenile European robins (Erithacus rubecula) and endogenous and external factors. J Ornithol 147:298–309

    Article  Google Scholar 

  • Casement MB (1966) Migration across the Mediterranean observed by radar. Ibis 108:461–491

    Article  Google Scholar 

  • Chernetsov NS (1999) Migratsionnye strategii kamyshevok Acrocephalus spp. v predelakh Evropy (Migratory strategies of Acrocephalus warblers within Europe). Dissertation, Zoological Institute RAS

    Google Scholar 

  • Chernetsov N (2006) Habitat selection by nocturnal passerine migrants en route: mechanisms and results. J Ornithol 147:185–191

    Article  Google Scholar 

  • Chernetsov N, Kishkinev D, Mouritsen H (2008) A long-distance avian migrant compensates for longitudinal displacement during spring migration. Curr Biol 18:188–190

    Article  PubMed  CAS  Google Scholar 

  • Cochran WW (1987) Orientation and other migratory behaviours of a Swainson’s thrush followed for 1,500 km. Anim Behav 35:927–929

    Article  Google Scholar 

  • Cochran WW, Montgomery GG, Graber RR (1967) Migratory flights of Hylocichla thrushes in spring: a radiotelemetry study. Living Bird 6:213–225

    Google Scholar 

  • Cochran WW, Mouritsen H, Wikelski M (2004) Migrating songbirds recalibrate their magnetic compass daily from twilight cues. Science 304:405–408

    Article  PubMed  CAS  Google Scholar 

  • Cochran WW, Bowlin MS, Wikelski M (2008) Wingbeat frequency and flap-pause ratio during natural migratory flight in thrushes. Integr Comp Biol 48:143–151

    Google Scholar 

  • Delingat J, Bairlein F, Hedenström A (2008) Obligatory barrier crossing and adaptive fuel management in migratory birds: the case of the Atlantic crossing in northern wheatears (Oenanthe oenanthe). Behav Ecol Sociobiol 62:1069–1078

    Article  Google Scholar 

  • Dolnik VR (1969) Bioenergetika letyaschey ptitsy (Bioenergetics of a flying bird). Zh Obschei Biologii 30:273–291

    Google Scholar 

  • Dolnik VR (1971) Energetika pereletov ptits (Eneregtics of avian migration). In: Poznanin LP (ed) Voprosy ornitologii (Topics of ornithology), vol 2, pp 52–81

    Google Scholar 

  • Dolnik VR (1995) Resursy energii i vremeni u ptits v prirode (Energy and time resources in free-living birds). Nauka, St Petersburg

    Google Scholar 

  • Dolnik VR, Gavrilov VM (1973) Energy metabolism during flight of some passerines. In: Bykhovskii BE (ed) Bird migrations, ecological and physiological factors. Halstead Press, NY

    Google Scholar 

  • Drury WH, Nisbet ICT (1964) Radar studies of orientation of songbird migrants in southeastern New England. Bird-Banding 35:69–119

    Article  Google Scholar 

  • Emlen ST (1975) Migration: orientation and navigation. In: Farner DS, King JR, Parkes KC (eds) Avian Biology, vol 5. Academic Press, NY

    Google Scholar 

  • Emlen ST (1980) Decision making by nocturnal bird migrants: the integration of multiple cues. In: Nohring R (ed) Acta XVII International Ornithological Congress. Deutsche Ornithologen-Gesellschaft, Berlin

    Google Scholar 

  • Gauthreaux SA Jr (1971) A radar and direct visual study of passerine spring migration in southern Louisiana. Auk 88:343–365

    Google Scholar 

  • Gavrilov VM (2011) Energy expenditures for flight, aerodynamic quality, and colonization of forest habitats by birds. Biol Bull 38:779–788

    Article  Google Scholar 

  • Hall S (1996) Time timing of post-juvenile moult and fuel deposition in relation to the onset of autumn migration in reed warblers Acrocephalus scirpaceus and sedge warblers Acrocephalus schoenobaenus. Ornis Svecica 6:89–96

    Google Scholar 

  • Holmes RT, Sawyer RH (1975) Oxygen consumption in relation to ambient temperature in five species of forest-dwelling thrushes (Hylocichla and Catharus). Comp Biochem Physiol A 50:527–531

    Article  Google Scholar 

  • Karlsson H, Nilsson C, Bäckman J, Alerstam T (2011) Nocturnal passerine migration without tailwind assistance. Ibis 153:485–493

    Article  Google Scholar 

  • Kerlinger P, Moore FR (1989) Atmospheric structure and avian migration. In: Johnston RF (ed) Current ornithology, vol 6. Plenum Press, NY

    Google Scholar 

  • Klaassen M, Kvist A, Lindström Å (2000) Flight costs and fuel composition of a bird migrating in a wind tunnel. Condor 102:444–451

    Article  Google Scholar 

  • Komenda-Zehnder S, Liechti F, Bruderer B (2002) Is reverse migration a common feature of nocturnal bird migration?—an analysis of radar data from Israel. Ardea 90:325–334

    Google Scholar 

  • Lindström Å, Klaassen M, Kvist A (1999) Variation in energy intake and basal metabolic rate of a bird migrating in a wind tunnel. Funct Ecol 13:352–359

    Article  Google Scholar 

  • Martin G (1990) Birds by night. A&C Black, London

    Google Scholar 

  • Masman D, Klaassen M (1987) Energy expenditure during free flight in trained and free-living Eurasian kestrels (Falco tinnunculus). Auk 104:603–616

    Google Scholar 

  • Mills AM, Thurber BJ, Mackenzie SA, Taylor PD (2011) Passerines use nocturnal flight for landscape-scale movements during migratory stopover. Condor 113:597–607

    Article  Google Scholar 

  • Moore FR (1987) Sunset and the orientation behaviour of migrating birds. Biol Rev 62:65–86

    Article  Google Scholar 

  • Moore FR, Aborn DA (1996) Time of departure by summer tanagers (Piranga rubra) from a stopover site following spring trans-Gulf migration. Auk 113:949–952

    Google Scholar 

  • Muheim R, Phillips JB, Åkesson S (2006) Polarized light cues underlie compass calibration in migratory songbirds. Science 313:837–839

    Article  PubMed  CAS  Google Scholar 

  • Muheim R, Åkesson S, Phillips JB (2007) Magnetic compass of migratory Savannah sparrows is calibrated by skylight polarization at sunrise and sunset. J Ornithol 148(Suppl 2):S485–S494

    Article  Google Scholar 

  • Mukhin A (2004) Night movements of young reed warblers (Acrocephalus scirpaceus) in summer: Is it postfledging dispersal? Auk 121:203–209

    Article  Google Scholar 

  • Mukhin A, Kosarev V, Ktitorov P (2005) Nocturnal life of young songbirds well before migration. Proc R Soc Lond B 272:1535–1539

    Article  Google Scholar 

  • Mukhin A, Grinkevich V, Helm B (2009) Under cover of darkness: nocturnal life of diurnal birds. J Biol Rhythms 24:225–231

    Article  PubMed  Google Scholar 

  • Newton I (2008) The migration ecology of birds. Academic Press, London

    Google Scholar 

  • Palmgren P (1949) On the diurnal rhythm of activity and rest in birds. Ibis 91:561–576

    Article  Google Scholar 

  • Parslow JLF (1969) The migration of passerine night migrants across the English Channel studied by radar. Ibis 111:48–79

    Article  Google Scholar 

  • Pennycuick CJ, Alerstam T, Hedenström A (1997) A new low-turbulence wind tunnel for bird flight experiments at Lund University, Sweden. J Exp Biol 200:1441–1449

    PubMed  Google Scholar 

  • Ramenofsky M, Agatsuma R, Barga M, Cameron R, Harm J, Landys M, Ramfar T (2003) Migratory behavior: new insights from captive studies. In: Berthold P, Gwinner E, Sonnenschein E (eds) Avian migration. Springer, Berlin

    Google Scholar 

  • Ramenofsky M, Agatsuma R, Ramfar T (2008) Environmental conditions affect the behavior of captive, migratory white-crowned sparrows. Condor 110:658–671

    Article  Google Scholar 

  • Rayner JMV (1994) Aerodynamic corrections for the flight of bats and birds in wind tunnels. J Zool 234:537–563

    Article  Google Scholar 

  • Richardson W (1978) Timing and amount of bird migration in relation to weather: a review. Oikos 30:224–272

    Article  Google Scholar 

  • Richardson W (1990) Timing of bird migration in relation to weather: updated review. In: Gwinner E (ed) Bird migration. Springer, Berlin

    Google Scholar 

  • Salewski V, Herremans M, Liechi F (2010) Migrating passerines can lose more body mass reversibly than previously thought. Ring Migr 25:22–28

    Article  Google Scholar 

  • Sandberg R (1991) Sunset orientation of robins, Erithacus rubecula, with different fields of sky vision. Behav Ecol Sociobiol 28:77–83

    Article  Google Scholar 

  • Schmaljohann H, Naef-Daenzer B (2011) Body condition and wind support initiate the shift of migratory direction and timing of nocturnal departure in a songbird. J Anim Ecol 80:1115–1122

    Article  PubMed  Google Scholar 

  • Schmaljohann H, Liechti F, Bruderer B (2007a) Songbird migration across the Sahara: the non-stop hypothesis rejected! Proc Royal Soc Lond B 274:735–739

    Article  Google Scholar 

  • Schmaljohann H, Liechti F, Bruderer B (2007b) An addendum to ‘songbird migration across the Sahara: the non-stop hypothesis rejected!’. Proc Royal Soc Lond B 274:1919–1920

    Article  Google Scholar 

  • Schmaljohann H, Becker PJJ, Karaardic H, Liechti F, Neaf-Daenzer B, Grande C (2011) Nocturnal exploratory flights, departure time, and direction in a migratory songbird. J Ornithol 152:439–452

    Article  Google Scholar 

  • Schmidt-Wellenburg CA, Engel S, Visser GH (2008) Energy expenditure during flight in relation to body mass: effects of natural increases in mass and artificial load in rose coloured starlings. J Comp Physiol B 178:767–777

    Article  PubMed  Google Scholar 

  • Seewagen CL (2008) An evaluation of condition indices and predictive models for nonivasive estimates of lipid mass of migrating common yellowthroats, ovenbirds, and Swainson‘s thrushes. J Field Ornithol 79:80–86

    Article  Google Scholar 

  • Shapoval AP (1981) Vidovoy i kolichestvenny sostav migriruyuschikh ptits, popadayuschikh nochyu v statsionarnye lovushki na Kurshskoy kose (Specific and quantitative composition of the birds captured at night in stationary traps on the Courish Spit). In: Michelson HA (ed) Abstracts 10th Baltic ornithological conference, Part 1. Riga, Zīnatne

    Google Scholar 

  • Švažas S (1993) Weather factors affecting migratory take-off of nocturnal migrants in autumn. Acta Ornithol Lithuanica 7–8:27–35

    Google Scholar 

  • Taylor PD, Mackenzie SA, Thurber BG, Calvert AM, Mills AM, McGuire LP, Guglielmo CG (2011) Landscape movements of migratory birds and bats reveal and expanded scale of stopover. PLoS ONE 6:e27054

    Article  PubMed  CAS  Google Scholar 

  • Videler JJ (2005) Avian flight. Oxford University Press, Oxford

    Google Scholar 

  • Wikelski M, Tarlow EM, Raim A, Diehl RH, Larkin RP, Visser GH (2003) Costs of migration in free-flying songbirds. Nature 423:704

    Article  PubMed  CAS  Google Scholar 

  • Yablonkevich ML (1987) Massa tela, vodnye i energeticheskie komponenty ptits v periody vesennego i osennego proletov na o. Barakelmes Aralskogo morya (Body weight, water and energy components of birds migrating in spring and autumn across the Aral Sea Island, Barsakelmes). Proc. Zool. Inst. 173:49–71

    Google Scholar 

  • Zehnder S, Åkesson S, Liechti F, Bruderer B (2002) Observation of free-flying nocturnal migrants at Falsterbo: occurrence of reverse flight directions in autumn. Avian Sci. 2:103–113

    Google Scholar 

  • Zimin VB (2003) Body mass variability in juvenile Robins Erithacus rubecula in the Ladoga area. Avian Ecol Behav 10:1–31

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikita Chernetsov .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chernetsov, N. (2012). Temporal Pattern and Energy Cost of Migratory Flight. In: Passerine Migration. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29020-6_7

Download citation

Publish with us

Policies and ethics