Advertisement

Dual Projective Hashing and Its Applications — Lossy Trapdoor Functions and More

  • Hoeteck Wee
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7237)

Abstract

We introduce the notion of dual projective hashing. This is similar to Cramer-Shoup projective hashing, except that instead of smoothness, which stipulates that the output of the hash function looks random on no instances, we require invertibility, which stipulates that the output of the hash function on no instances uniquely determine the hashing key, and moreover, that there is a trapdoor which allows us to efficiently recover the hashing key.

  • We show a simple construction of lossy trapdoor functions via dual projective hashing. Our construction encompasses almost all known constructions of lossy trapdoor functions, as given in the works of Peikert and Waters (STOC ’08) and Freeman et al. (PKC ’10).

  • We also provide a simple construction of deterministic encryption schemes secure with respect to hard-to-invert auxiliary input, under an additional assumption about the projection map. Our construction clarifies and encompasses all of the constructions given in the recent work of Brakerski and Segev (Crypto ’11). In addition, we obtain a new deterministic encryption scheme based on LWE.

Keywords

Hash Function Encryption Scheme Projective Property Oblivious Transfer Auxiliary Input 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aiello, W., Ishai, Y., Reingold, O.: Priced Oblivious Transfer: How to Sell Digital Goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous Hardcore Bits and Cryptography against Memory Attacks. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 474–495. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and Efficiently Searchable Encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Bellare, M., Fischlin, M., O’Neill, A., Ristenpart, T.: Deterministic Encryption: Definitional Equivalences and Constructions without Random Oracles. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 360–378. Springer, Heidelberg (2008)Google Scholar
  5. 5.
    Bellare, M., Brakerski, Z., Naor, M., Ristenpart, T., Segev, G., Shacham, H., Yilek, S.: Hedged Public-Key Encryption: How to Protect against Bad Randomness. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 232–249. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Bellare, M., Hofheinz, D., Yilek, S.: Possibility and Impossibility Results for Encryption and Commitment Secure under Selective Opening. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 1–35. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Boldyreva, A., Fehr, S., O’Neill, A.: On Notions of Security for Deterministic Encryption, and Efficient Constructions without Random Oracles. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 335–359. Springer, Heidelberg (2008)Google Scholar
  8. 8.
    Boneh, D., Gentry, C., Hamburg, M.: Space-efficient identity based encryption without pairings. In: FOCS, pp. 647–657 (2007)Google Scholar
  9. 9.
    Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-Secure Encryption from Decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 108–125. Springer, Heidelberg (2008)Google Scholar
  10. 10.
    Brakerski, Z., Goldwasser, S.: Circular and Leakage Resilient Public-Key Encryption under Subgroup Indistinguishability- (or: Quadratic Residuosity Strikes Back). In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 1–20. Springer, Heidelberg (2010); Also, Cryptology ePrint Archive, Report 2010/522Google Scholar
  11. 11.
    Brakerski, Z., Segev, G.: Better Security for Deterministic Public-Key Encryption: The Auxiliary-Input Setting. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 543–560. Springer, Heidelberg (2011)Google Scholar
  12. 12.
    Camenisch, J.L., Shoup, V.: Practical Verifiable Encryption and Decryption of Discrete Logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Cramer, R., Shoup, V.: A Practical Public Key Cryptosystem Provably Secure against Adaptive Chosen Ciphertext Attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)Google Scholar
  14. 14.
    Cramer, R., Shoup, V.: Universal Hash Proofs and a Paradigm for Adaptive Chosen Ciphertext Secure Public-Key Encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002); Also, Cryptology ePrint Archive, Report 2001/085 CrossRefGoogle Scholar
  15. 15.
    Damgård, I., Jurik, M.: A Generalisation, a Simplification and Some Applications of Paillier’s Probabilistic Public-Key System. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 119–136. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  16. 16.
    Dodis, Y., Kalai, Y.T., Lovett, S.: On cryptography with auxiliary input. In: STOC, pp. 621–630 (2009)Google Scholar
  17. 17.
    Dodis, Y., Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Public-Key Encryption Schemes with Auxiliary Inputs. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 361–381. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Freeman, D.M., Goldreich, O., Kiltz, E., Rosen, A., Segev, G.: More Constructions of Lossy and Correlation-Secure Trapdoor Functions. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 279–295. Springer, Heidelberg (2010); Also, Cryptology ePrint Archive, Report 2009/590 CrossRefGoogle Scholar
  19. 19.
    Fuller, B., O’Neill, A., Reyzin, L.: A unified approach to deterministic encryption: New constructions and a connection to computational entropy. In: TCC 2012 (2012); To appear, also Cryptology ePrint Archive, Report 2012/005Google Scholar
  20. 20.
    Gennaro, R., Lindell, Y.: A framework for password-based authenticated key exchange. ACM Trans. Inf. Syst. Secur. 9(2), 181–234 (2006)CrossRefGoogle Scholar
  21. 21.
    Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In: STOC, pp. 25–32 (1989)Google Scholar
  22. 22.
    Halevi, S., Kalai, Y.T.: Smooth Projective Hashing and Two-Message Oblivious Transfer. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 78–95. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. 23.
    Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Hemenway, B., Ostrovsky, R.: Lossy trapdoor functions from smooth homomorphic hash proof systems. In: Electronic Colloquium on Computational Complexity, ECCC (2009)Google Scholar
  25. 25.
    Hemenway, B., Libert, B., Ostrovsky, R., Vergnaud, D.: Lossy Encryption: Constructions from General Assumptions and Efficient Selective Opening Chosen Ciphertext Security. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 70–88. Springer, Heidelberg (2011); also Cryptology ePrint Archive, Report 2009/088CrossRefGoogle Scholar
  26. 26.
    Ilya Mironov, O.R., Pandey, O., Segev, G.: Incremental Deterministic Public-key Encryption. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 628–644. Springer, Heidelberg (2012)Google Scholar
  27. 27.
    Katz, J., Ostrovsky, R., Yung, M.: Efficient and secure authenticated key exchange using weak passwords. J. ACM 57(1) (2009)Google Scholar
  28. 28.
    Kiltz, E., O’Neill, A., Smith, A.: Instantiability of RSA-OAEP under Chosen-Plaintext Attack. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 295–313. Springer, Heidelberg (2010)Google Scholar
  29. 29.
    Mol, P., Yilek, S.: Chosen-Ciphertext Security from Slightly Lossy Trapdoor Functions. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 296–311. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  30. 30.
    Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: SODA, pp. 448–457 (2001)Google Scholar
  31. 31.
    Naor, M., Segev, G.: Public-Key Cryptosystems Resilient to Key Leakage. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  32. 32.
    Nishimaki, R., Fujisaki, E., Tanaka, K.: Efficient Non-interactive Universally Composable String-Commitment Schemes. In: Pieprzyk, J., Zhang, F. (eds.) ProvSec 2009. LNCS, vol. 5848, pp. 3–18. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  33. 33.
    Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)Google Scholar
  34. 34.
    Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: STOC, pp. 187–196 (2008)Google Scholar
  35. 35.
    Trevisan, L.: Extractors and pseudorandom generators. JACM 48(4), 860–879 (2001)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2012

Authors and Affiliations

  • Hoeteck Wee
    • 1
  1. 1.George Washington UniversityUSA

Personalised recommendations