Advertisement

Identity-Based (Lossy) Trapdoor Functions and Applications

  • Mihir Bellare
  • Eike Kiltz
  • Chris Peikert
  • Brent Waters
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7237)

Abstract

We provide the first constructions of identity-based (injective) trapdoor functions. Furthermore, they are lossy. Constructions are given both with pairings (DLIN) and lattices (LWE). Our lossy identitybased trapdoor functions provide an automatic way to realize, in the identity-based setting, many functionalities previously known only in the public-key setting. In particular we obtain the first deterministic and efficiently searchable IBE schemes and the first hedged IBE schemes, which achieve best possible security in the face of bad randomness. Underlying our constructs is a new definition, namely partial lossiness, that may be of broader interest.

Keywords

Random Oracle Auxiliary Input Trapdoor Function Adaptive Case Challenge Identity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abeni, P., Bello, L., Bertacchini, M.: Exploiting DSA-1571: How to break PFS in SSL with EDH (July 2008), http://www.lucianobello.com.ar/exploiting_DSA-1571/index.html
  2. 2.
    Agrawal, S., Boneh, D., Boyen, X.: Efficient Lattice (H)IBE in the Standard Model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Agrawal, S., Boneh, D., Boyen, X.: Lattice Basis Delegation in Fixed Dimension and Shorter-Ciphertext Hierarchical IBE. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 98–115. Springer, Heidelberg (2010)Google Scholar
  4. 4.
    Ajtai, M.: Generating Hard Instances of the Short Basis Problem. In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 1–9. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  5. 5.
    Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. Theory of Computing Systems 48(3), 535–553 (2009); Preliminary version in STACS 2009MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and Efficiently Searchable Encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Bellare, M., Brakerski, Z., Naor, M., Ristenpart, T., Segev, G., Shacham, H., Yilek, S.: Hedged Public-Key Encryption: How to Protect against Bad Randomness. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 232–249. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Bellare, M., Halevi, S., Sahai, A., Vadhan, S.P.: Many-to-One Trapdoor Functions and Their Relation to Public-Key Cryptosystems. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 283–298. Springer, Heidelberg (1998)Google Scholar
  9. 9.
    Bellare, M., Hofheinz, D., Yilek, S.: Possibility and Impossibility Results for Encryption and Commitment Secure under Selective Opening. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 1–35. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Bellare, M., Kiltz, E., Peikert, C., Waters, B.: Identity-based (lossy) trapdoor functions and applications. IACR ePrint Archive, Report 2011/479, Full version of this abstract (2011), http://eprint.iacr.org/
  11. 11.
    Bellare, M., Namprempre, C., Neven, G.: Security proofs for identity-based identification and signature schemes. Journal of Cryptology 22(1), 1–61 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Bellare, M., Ristenpart, T.: Simulation without the Artificial Abort: Simplified Proof and Improved Concrete Security for Waters’ IBE Scheme. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 407–424. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Bellare, M., Rogaway, P.: Optimal Asymmetric Encryption. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  14. 14.
    Bellare, M., Rogaway, P.: The Security of Triple Encryption and a Framework for Code-Based Game-Playing Proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Bennet, C., Brassard, G., Crépeau, C., Maurer, U.: Generalized privacy amplification. IEEE Transactions on Information Theory 41(6) (1995)Google Scholar
  16. 16.
    Boldyreva, A., Fehr, S., O’Neill, A.: On Notions of Security for Deterministic Encryption, and Efficient Constructions without Random Oracles. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 335–359. Springer, Heidelberg (2008)Google Scholar
  17. 17.
    Boneh, D., Boyen, X.: Efficient Selective-ID Secure Identity-Based Encryption Without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Boneh, D., Boyen, X.: Secure Identity Based Encryption Without Random Oracles. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer, Heidelberg (2004)Google Scholar
  19. 19.
    Boneh, D., Boyen, X., Shacham, H.: Short Group Signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)Google Scholar
  20. 20.
    Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public Key Encryption with Keyword Search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  21. 21.
    Boneh, D., Franklin, M.K.: Identity based encryption from the Weil pairing. SIAM Journal on Computing 32(3), 586–615 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Boyen, X., Waters, B.: Anonymous Hierarchical Identity-Based Encryption (Without Random Oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 290–307. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    Boyen, X., Waters, B.: Shrinking the Keys of Discrete-Log-Type Lossy Trapdoor Functions. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 35–52. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  24. 24.
    Brown, D.R.: A weak randomizer attack on RSA-OAEP with e=3. IACR ePrint Archive, Report 2005/189 (2005), http://eprint.iacr.org/
  25. 25.
    Cachin, C., Micali, S., Stadler, M.A.: Computationally Private Information Retrieval with Polylogarithmic Communication. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999)Google Scholar
  26. 26.
    Canetti, R., Dakdouk, R.R.: Towards a Theory of Extractable Functions. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 595–613. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  27. 27.
    Canetti, R., Halevi, S., Katz, J.: A Forward-Secure Public-Key Encryption Scheme. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  28. 28.
    Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai Trees, or How to Delegate a Lattice Basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–552. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  29. 29.
    Cocks, C.: An Identity Based Encryption Scheme Based on Quadratic Residues. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  30. 30.
    Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on Information Theory 22(6), 644–654 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Dodis, Y., Katz, J., Xu, S., Yung, M.: Strong Key-Insulated Signature Schemes. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 130–144. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  32. 32.
    Dorrendorf, L., Gutterman, Z., Pinkas, B.: Cryptanalysis of the windows random number generator. In: Ning, P., di Vimercati, S.D.C., Syverson, P.F. (eds.) ACM CCS 2007, pp. 476–485. ACM Press (October 2007)Google Scholar
  33. 33.
    Freeman, D.M., Goldreich, O., Kiltz, E., Rosen, A., Segev, G.: More Constructions of Lossy and Correlation-Secure Trapdoor Functions. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 279–295. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  34. 34.
    Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 197–206. ACM Press (May 2008)Google Scholar
  35. 35.
    Goldberg, I., Wagner, D.: Randomness in the Netscape browser. Dr. Dobb’s Journal (January 1996)Google Scholar
  36. 36.
    Gutterman, Z., Malkhi, D.: Hold Your Sessions: An Attack on Java Session-Id Generation. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 44–57. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  37. 37.
    Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM Journal on Computing 28(4), 1364–1396 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Hemenway, B., Ostrovsky, R.: Lossy trapdoor functions from smooth homomorphic hash proof systems. Electronic Colloquium on Computational Complexity TR09-127 (2009)Google Scholar
  39. 39.
    Hofheinz, D., Kiltz, E.: Programmable Hash Functions and Their Applications. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 21–38. Springer, Heidelberg (2008)Google Scholar
  40. 40.
    Kiltz, E., Mohassel, P., O’Neill, A.: Adaptive Trapdoor Functions and Chosen-Ciphertext Security. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 673–692. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  41. 41.
    Kiltz, E., O’Neill, A., Smith, A.: Instantiability of RSA-OAEP under Chosen-Plaintext Attack. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 295–313. Springer, Heidelberg (2010)Google Scholar
  42. 42.
    Lyubashevsky, V., Micciancio, D.: On Bounded Distance Decoding, Unique Shortest Vectors, and the Minimum Distance Problem. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 577–594. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  43. 43.
    Micciancio, D., Peikert, C.: Trapdoors for Lattices: Simpler, Tighter, Faster, Smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012)Google Scholar
  44. 44.
    Mueller, M.: Debian OpenSSL predictable PRNG bruteforce SSH exploit (May 2008), http://milw0rm.com/exploits/5622
  45. 45.
    Ouafi, K., Vaudenay, S.: Smashing SQUASH-0. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 300–312. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  46. 46.
    Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In: Mitzenmacher, M. (ed.) 41st ACM STOC, pp. 333–342. ACM Press (May/June 2009)Google Scholar
  47. 47.
    Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 187–196. ACM Press (May 2008)Google Scholar
  48. 48.
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press (May 2005)Google Scholar
  49. 49.
    Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signature and public-key cryptosystems. Communications of the Association for Computing Machinery 21(2), 120–126 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Rogaway, P., Shrimpton, T.: A Provable-Security Treatment of the Key-Wrap Problem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  51. 51.
    Rosen, A., Segev, G.: Chosen-Ciphertext Security via Correlated Products. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 419–436. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  52. 52.
    Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing. In: SCIS 2000, Okinawa, Japan (January 2000)Google Scholar
  53. 53.
    Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  54. 54.
    Waters, B.: Dual System Encryption: Realizing Fully Secure IBE and HIBE under Simple Assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  55. 55.
    Waters, B.: Efficient Identity-Based Encryption Without Random Oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  56. 56.
    Yilek, S., Rescorla, E., Shacham, H., Enright, B., Savage, S.: When private keys are public: Results from the 2008 Debian OpenSSL vulnerability. In: IMC 2009. ACM (2009)Google Scholar

Copyright information

© International Association for Cryptologic Research 2012

Authors and Affiliations

  • Mihir Bellare
    • 1
  • Eike Kiltz
    • 2
  • Chris Peikert
    • 3
  • Brent Waters
    • 4
  1. 1.Department of Computer Science & EngineeringUniversity of CaliforniaSan DiegoUSA
  2. 2.Horst Görtz Institut für IT-SicherheitRuhr-Universität BochumGermany
  3. 3.School of Computer Science, College of ComputingGeorgia Institute of TechnologyUSA
  4. 4.Department of Computer ScienceUniversity of Texas at AustinUSA

Personalised recommendations