Skip to main content

Complete Similarity Mathematical Models on Laminar Free Convection Film Condensation from Vapor–Gas Mixture

  • Chapter
  • First Online:
Free Convection Film Flows and Heat Transfer

Part of the book series: Heat and Mass Transfer ((HMT))

  • 1357 Accesses

Abstract

By means of the new similarity analysis method, the governing partial differential equations of laminar free convection film condensation of vapor–gas mixture are transformed into the complete dimensionless mathematical models. The transformed complete governing mathematical models are equivalent to the system of dimensionless governing equations, which involve (1) the continuity, momentum, and energy equations for both liquid and vapor–gas mixture films, as well as species conservation equation with mass diffusion in the vapor–gas mixture film, (2) a set of interfacial physical matching conditions, such as those for two-dimensional velocity component balances, shear force balance, mass flow rate balance, temperature balance, heat transfer balance, concentration condition, as well as the balance between the condensate mass flow and vapor mass diffusion. On the other hand, the transformed complete similarity mathematical models of the film condensation of vapor–gas mixture are very well coupled with a series of physical property factors, such as the density factor, absolute viscosity factor, thermal conductivity factor, of the medium of liquid film and the vapor–gas mixture film. Thus, the transformed complete similarity mathematical models are advanced ones for consideration of variable physical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W. Nusselt, The condensationof steam on cooled surface, Z. d. Ver. Deut. Ing. 60, 541–546, 569–575 (1916) (Translated into English by D. Fullarton, Chem. Engr. Funds. 1(2), 6–19 (1982)).

    Google Scholar 

  2. D. Butterworth, R.G. Sardesai, P. Griffith, A.E. Bergles, Condensation, in: Heat Exchanger Design Handbook ( Hemisphere , Washington, DC, 1983)

    Google Scholar 

  3. P.J. Marto, Fundamemtals of condensation, in Two-Phase Flow Heat Exchangers: Thermal-Hydraulic Fundamentals and Design, ed. by S. Kakac, A.E. Bergles, E.Q. Fernandes (Kluwer Academic, Dordrecht, 1988), pp. 221–291

    Chapter  Google Scholar 

  4. J.G. Collier, J.R. Thome, Convective Boiling and Condensation, 3rd edn. (Oxford University Press, New York, 1996), pp. 430–487

    Google Scholar 

  5. J.W. Rose, Condensation heat transfer. Int. J. Heat Mass Transf. 35, 479–485 (1999)

    Article  Google Scholar 

  6. D.Y. Shang, T. Adamek, Study on laminar film condensation of saturated steam on a vertical flat plate for consideration of various physical factors including variable thermophysical properties. Wärme- und Stoffübertragung 30, 89–100 (1994)

    Google Scholar 

  7. D.Y. Shang, B.X. Wang, An extended study on steady-state laminar film condensation of a superheated vapor on an isothermal vertical plate. Int. J. Heat Mass Transf. 40(4), 931–941 (1997)

    Article  MATH  Google Scholar 

  8. W.J. Minkowycz, E.M. Sparrow, Condensation heat Transfer in the presence of noncondensables, interfacial resistance, superheating, variable properties, and diffusion. Int. J. Heat Mass Transf. 9, 1125–1144 (1966)

    Article  Google Scholar 

  9. L. Slegers, R.A. Seban, Laminar film condensation of steam containing small concentration of air. Int. J. Heat Mass Transf. 13, 1941–1947 (1970)

    Article  Google Scholar 

  10. H.K. Al-Diwany, J.W. Rose, Free convection film condensation of steam in the presence of non-condensing gases. Int. J. Heat Mass Transf. 16, 1359–1369 (1972)

    Article  Google Scholar 

  11. R.K. Oran, C.J. Chen, Effect of lighter noncond-Nsa3l -Gas on laminar film condensation over a vertical plate. Int. J. Heat Mass Transf. 18, 993–996 (1975)

    Article  Google Scholar 

  12. V.M. Borishanskiy, O.P. Volkov, Effect of uncondensable gases content on heat transfer in steam condensation in a vertical tube. Heat Transf. Sov. Res. 9, 35–41 (1977)

    Google Scholar 

  13. C.D. Morgan, C.G. Rush, Experimental measurements of condensation heat transfer with noncondensable gases present, in 21st National Heat Transfer Conference, vol. 27, Seattle, Washington, ASME, HTD, July 1983, pp. 24–28 (1983).

    Google Scholar 

  14. P.J. Vernier, P. Solignac, A test of some condensation models in the presence of a noncondensable gas against the ecotra experiment. Nucl. Technol. 77(1), 82–91 (1987)

    Google Scholar 

  15. S.M. Chiaasaan, B.K. Kamboj, S.I. Abdel-Khalik, Two-fluid modeling of condensation in the presence of noncondensables in two-phase channel flows. Nucl. Sci. Eng. 119, 1–17 (1995)

    Google Scholar 

  16. Y.S. Chin, S.J. Ormiston, H.M. Soliman, A two-phase boundary-layer model for laminar mixed-convection condensation with a noncondensable gas on inclined plates. Heat Mass Transf. 34, 271–277 (1998)

    Article  Google Scholar 

  17. S.T. Revankar, D. Pollock, Laminar film condensation in a vertical tube in the presence of noncondensable gas. Appl. Math. Model. 29(4), 341–359 (2005)

    Article  MATH  Google Scholar 

  18. J.M. Martin-Valdepenas, M.A. Jimenez, F. Martin-Fuertes, J.A. Fernandez-Benitez, Comparison of film condensation models in presence of non-condensable gases implemented in a CFD Code. Heat and Mass Transf. 41(11), 961–976 (2005)

    Article  Google Scholar 

  19. S. Oh, S.T. Revankar, Experimental and theoretical investigation of film condensation with noncondensable gas. Int. J. Heat Mass Transf. 49(15–16), 2523–2534 (2006)

    Article  Google Scholar 

  20. D.Y. Shang, L.C. Zhong, Extensive study on laminar free film condensation from vapor-gas mixture. Int. J. Heat Mass Transf. 51, 4300–4314 (2008)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-Yi Shang .

Appendix A: Similarity Transformation of the Governing Partial Differential Equations (18.1)–(18.7) and Their Boundary Condition Equations (18.8)–(18.16)

Appendix A: Similarity Transformation of the Governing Partial Differential Equations (18.1)–(18.7) and Their Boundary Condition Equations (18.8)–(18.16)

1.1 For Liquid Film

With the assumed transformation variables for the liquid film shown in Eqs. (18.17)–(18.21), the governing partial differential equations (18.1)–(18.3) of the liquid film are transformed into dimensionless ordinary ones as follows, respectively:

1.1.1 Similarity Transformation of Eq. (18.1)

Equation (18.1) is changed to

$$\begin{aligned} W_{x\mathrm{l}}\frac{\partial \rho _\mathrm{l}}{\partial x}+w_{y\mathrm{l}}\frac{\partial \rho _\mathrm{l}}{\partial y}+\rho _\mathrm{l}\left( \frac{\partial w_{x\mathrm{l}}}{\partial x}+\frac{\partial w_{y\mathrm{l}}}{\partial y}\right) =0 \end{aligned}$$
(A1)

With Eq. (18.20) we have

$$\begin{aligned} \frac{\partial w_{x\mathrm{l}}}{\partial x}=\sqrt{\frac{g}{x}}\left( \frac{\rho _{\mathrm{l},\mathrm{w}}-\rho _{\mathrm{m},\infty }}{\rho _{\text{ l},\mathrm{s}}}\right) ^{1/2}W_{x\mathrm{l}}+2\sqrt{gx}\left( \frac{\rho _{\mathrm{l},\mathrm{w}}-\rho _{\mathrm{m},\infty }}{\rho _{\text{ l},\mathrm{s}}}\right) ^{1/2} \frac{\mathrm{d}W_{x\mathrm{l}}}{\mathrm{d}\eta _\mathrm{l}}\frac{\partial \eta _\mathrm{l}}{\partial x} \end{aligned}$$

With Eqs. (18.17) and (18.18) we have

$$\begin{aligned} \frac{\partial \eta _\mathrm{l}}{\partial x}&=\frac{\partial }{\partial x}\left[ \left( \frac{1}{4}\frac{g(\rho _{\mathrm{l},\mathrm{w}}-\rho _{\mathrm{m},\infty })}{{{\nu _{\text{ l},\mathrm{s}}}^{2}}\rho _{\text{ l},\mathrm{s}}}\right) ^{1/4}\frac{y}{x^{1/4}}\right] \nonumber \\&=-\frac{1}{4}\left( \frac{1}{4}{\text{ Gr }}_{x{\text{ l},\mathrm{s}}}\right) ^{1/4}\frac{y}{x^{2}} \end{aligned}$$
$$\begin{aligned} =-\frac{1}{4}x^{-1}\eta _\mathrm{l} \end{aligned}$$
(A2)

Then,

$$\begin{aligned} \frac{\partial w_{x\mathrm{l}}}{\partial x}&=\sqrt{\frac{g}{x}}\left( \frac{\rho _{\mathrm{l},\mathrm{w}}-\rho _{\mathrm{m},\infty }}{\rho _{\text{ l},\mathrm{s}}}\right) ^{1/2} W_{x\mathrm{l}}+2\sqrt{gx}\left( \frac{\rho _{\mathrm{l},\mathrm{w}}-\rho _{\mathrm{m},\infty }}{\rho _{\text{ l},\mathrm{s}}}\right) ^{1/2}\frac{\mathrm{d}W_{x\mathrm{l}}}{\mathrm{d}\eta }\frac{1}{4}x^{-1}\eta _\mathrm{l} \end{aligned}$$
$$\begin{aligned} =\sqrt{\frac{g}{x}}\left( \frac{\rho _{\mathrm{l},\mathrm{w}}-{\rho }_{\mathrm{m},\infty }}{\rho _{\text{ l},\mathrm{s}}}\right) ^{1/2}\left( W_{x\mathrm{l}}-\frac{1}{2}\eta _\mathrm{l}\frac{\mathrm{d}W_{x\mathrm{l}}}{\mathrm{d}\eta _\mathrm{l}}\right) \end{aligned}$$
(A3)

With Eqs. (18.17) and (18.21) we have

$$\begin{aligned} \frac{\partial w_{y\mathrm{l}}}{\partial y}=2\sqrt{\frac{g}{x}}\left( \frac{\rho _{\mathrm{l},\mathrm{w}}-\rho _{\mathrm{m},\infty }}{\rho _{\text{ l},\mathrm{s}}}\right) ^{1/2} \frac{\mathrm{d}W_{y\mathrm{l}} }{\mathrm{d}\eta _\mathrm{l}} \end{aligned}$$
(A4)

With Eq. (18.17) we have

$$\begin{aligned} \frac{\partial \rho _\mathrm{l}}{\partial x}=\frac{\mathrm{d}\rho }{\mathrm{d}\eta _\mathrm{l}}\frac{\mathrm{d}\eta _\mathrm{l}}{\mathrm{d}x} \end{aligned}$$

With Eq. (A2), we have

$$\begin{aligned} \frac{\partial \rho _\mathrm{l}}{\partial x}=-\frac{1}{4}\eta _\mathrm{l}x^{-1}\frac{\mathrm{d}\rho _\mathrm{l}}{\mathrm{d}\eta _\mathrm{l}} \end{aligned}$$
(A5)

In addition, with Eq. (18.17), we have

$$\begin{aligned} \frac{\partial \rho _\mathrm{l} }{\partial y}=\frac{\mathrm{d}\rho }{\mathrm{d}\eta _\mathrm{l} }\frac{\mathrm{d}\eta _\mathrm{l}}{\mathrm{d}y}=\frac{\mathrm{d}\rho _\mathrm{l}}{\mathrm{d}\eta _\mathrm{l}}\left( \frac{1}{4}{\text{Gr}}_{{xl}, \text{ms}}\right) ^{1/4}x^{-1} \end{aligned}$$
(A6)

With Eqs. (A3)–(A6), Eq. (A1) is changed to

$$\begin{aligned} \,&2\sqrt{gx}\left( \frac{\rho _{\mathrm{l},\mathrm{w}}-\rho _{\mathrm{m},\infty }}{\rho _{\text{ l},\mathrm{s}}}\right) ^{1/2}W_{x\mathrm{l}}\left( -\frac{1}{4}\eta _\mathrm{l}{x}^{-1}\frac{\mathrm{d}\rho _\mathrm{l}}{\mathrm{d}\eta _\mathrm{l}}\right) \\&+ 2\sqrt{gx}\left( \frac{\rho _{\mathrm{l},\mathrm{w}}-\rho _{\mathrm{m},\infty }}{\rho _{\text{ l},\mathrm{s}}}\right) ^{1/2}\left( \frac{1}{4}{\text{ Gr }}_{x\mathrm{l},\infty }\right) ^{-1/4}W_{y\mathrm{v}}\frac{\mathrm{d}\rho _\mathrm{l}}{\mathrm{d}\eta _\mathrm{l}}\left( \frac{1}{4}{\text{ Gr }}_{x\mathrm{l},s}\right) ^{1/4}x^{-1}\\&+ \rho _\mathrm{l}\left[ \sqrt{\frac{g}{x}}\left( \frac{\rho _{\mathrm{l},\mathrm{w}}-\rho _{\mathrm{m},\infty }}{\rho _{\text{ l},\mathrm{s}}}\right) ^{1/2}\left( W_{x\mathrm{l}}-\frac{1}{2}\eta _\mathrm{l}\frac{\mathrm{d}W_{x\mathrm{l}}}{\mathrm{d}\eta _\mathrm{l}}\right) \right. \nonumber \\&\left. +2\sqrt{\frac{g}{x}}\left( \frac{\rho _{\mathrm{l},\mathrm{w}}-\rho _{\mathrm{m},\infty }}{\rho _{\text{ l},\mathrm{s}}}\right) ^{1/2}\frac{\mathrm{d}W_{y\mathrm{l}}}{\mathrm{d}\eta _\mathrm{l}}\right] = 0 \end{aligned}$$

The above equation is simplified to

$$\begin{aligned}&2\sqrt{gx} W_{x\mathrm{l}} \left( -\frac{1}{4}\eta _\mathrm{l} x^{-1}\frac{\mathrm{d}\rho _\mathrm{l} }{\mathrm{d}\eta _\mathrm{l} }\right) +2\sqrt{gx} W_{y\mathrm{l}} \frac{\mathrm{d}\rho _\mathrm{l} }{\mathrm{d}\eta _\mathrm{l} }x^{-1}\nonumber \\&+\rho _\mathrm{l} \left[ \sqrt{\frac{g}{x}} \left( W_{x\mathrm{l}} -\frac{1}{2}\eta _\mathrm{l} \frac{\mathrm{d}W_{x\mathrm{l}} }{\mathrm{d}\eta _\mathrm{l} }\right) +2\sqrt{\frac{g}{x}} \frac{\mathrm{d}W_{y\mathrm{l}} }{\mathrm{d}\eta _\mathrm{l} }\right] = 0 \end{aligned}$$

The above equation is divided by \(\sqrt{\frac{g}{x}} \), and simplified to

$$\begin{aligned} 2W_{x\mathrm{l}} -\eta _\mathrm{l} \frac{\mathrm{d}W_{x\mathrm{l}}}{\mathrm{d}\eta _\mathrm{l}}+4\frac{\mathrm{d}W_{y\mathrm{l}}}{\mathrm{d}\eta _\mathrm{l}}-\frac{1}{\rho _\mathrm{l}}\frac{\mathrm{d}\rho _\mathrm{l}}{\mathrm{d}\eta _\mathrm{l}}(\eta _\mathrm{l} W_{x\mathrm{l}} -4W_{y\mathrm{l}})=0 \end{aligned}$$
(18.28)

1.1.2 Similarity Transformation of Eq. (18.2)

Equation (18.2) can be rewritten as

$$\begin{aligned} \rho _\mathrm{l}\left( w_{x\mathrm{l}} \frac{\partial w_{x\mathrm{l}}}{\partial x}+w_{y\mathrm{l}} \frac{\partial w_{x\mathrm{l}}}{\partial y}\right) =\mu _\mathrm{l}\frac{\partial ^{2}w_{x\mathrm{l}} }{\partial y^{2}}+\frac{\partial \mu _\mathrm{l}}{\partial y} \frac{\partial w_{x\mathrm{l}} }{\partial y}+g(\rho _\mathrm{l} -\rho _{\mathrm{m},\infty }) \end{aligned}$$
(A7)

With Eqs. (18.17), (18.18), and (18.21) we have

$$\begin{aligned} \frac{\partial w_{x\mathrm{l}} }{\partial y}&=2\sqrt{gx} \left( \frac{\rho _{\mathrm{l},\mathrm{w}} -\rho _{\mathrm{m},\infty } }{\rho _{\text{ l},\mathrm{s}} }\right) ^{1/2}\frac{\mathrm{d}W_{x\mathrm{l}} }{\mathrm{d}\eta }\frac{\partial \eta }{\partial y} \nonumber \\&=2\sqrt{gx} \left( \frac{\rho _{\mathrm{l},\mathrm{w}} -\rho _{\mathrm{m},\infty } }{\rho _{\text{ l},\mathrm{s}} }\right) ^{1/2}\frac{\mathrm{d}W_{y\mathrm{l}} }{\mathrm{d}\eta }x^{-1}\left( \frac{1}{4}{\text{ Gr }}_{x{\text{ l},\mathrm{s}}} \right) ^{1/4} \end{aligned}$$
(A8)

Then,

$$\begin{aligned} \frac{\partial ^{2}w_{x\mathrm{l}} }{\partial y^{2}}=2\sqrt{gx}\left( \frac{\rho _{\mathrm{l},\mathrm{w}} -\rho _{\mathrm{m},\infty } }{\rho _{\text{ l},\mathrm{s}} }\right) ^{1/2} \frac{\mathrm{d}^{2}W_{x\mathrm{l}} }{\mathrm{d}\eta ^{2}}x^{-2} \left( {1 \over 4}{\text{ Gr }}_{x{\text{ l},\mathrm{s}}}\right) ^{1/2} \end{aligned}$$
(A9)

In addition,

$$\begin{aligned} \frac{\partial \mu _\mathrm{l}}{\partial y}=\frac{\mathrm{d}\mu _\mathrm{l}}{\eta _\mathrm{l}}\left( \frac{1}{4}{\text{ Gr }}_{x{\text{ l},\mathrm{s}}}\right) ^{1/4}x^{-1} \end{aligned}$$
(A10)

With (A3), (A8), (A9), (18.36), and (A10), Eq. (A7) is changed to

$$\begin{aligned}&\rho _\mathrm{l}\left[ 2\sqrt{gx}\left( \frac{\rho _{\mathrm{l},\mathrm{w}}-{\rho _{\mathrm{m},\infty }}}{\rho _{\text{ l},\mathrm{s}}}\right) ^{1/2}W_{x\mathrm{l}}\sqrt{\frac{g}{x}}\left( \frac{\rho _{\text{ l},\mathrm{w}}-{\rho _{\mathrm{m},\infty }}}{\rho _{\text{ l},\mathrm{s}}}\right) ^{1/2}\left( W_{x\mathrm{l}}-\frac{1}{2}\eta _\mathrm{l}\frac{\mathrm{d}W_{x\mathrm{l}}}{\mathrm{d}\eta _\mathrm{l}}\right) \right. \\&\quad +2\sqrt{gx}\left( \frac{\rho _{\mathrm{l},\mathrm{w}}-{\rho _{\mathrm{m},\infty }}}{\rho _{\text{ l},\mathrm{s}}}\right) ^{1/2}\left( \frac{1}{4}{\text{ Gr }}_{x{\text{ l},\mathrm{s}}}\right) ^{-1/4}W_{y\mathrm{l}}2\sqrt{gx}\left( \frac{\rho _{\text{ l},\mathrm{w}}-{\rho _{\mathrm{m},\infty }}}{\rho _{\text{ l},\mathrm{s}}}\right) ^{1/2}\\&\quad \times \left. \frac{\mathrm{d}W_{x\mathrm{l}}}{\mathrm{d}\eta _\mathrm{l}}x^{-1}\left( \frac{1}{4}{\text{ Gr }}_{x{\text{ l},\mathrm{s}}}^{\prime }\right) ^{-1/4}\right] \\&=\mu _\mathrm{l}2\sqrt{gx}\left( \frac{\rho _{\mathrm{l},\mathrm{w}}-{\rho _{\mathrm{v},\mathrm{m}\infty }}}{\rho _{\text{ l},\mathrm{s}}}\right) ^{1/2}\frac{\mathrm{d}^{2}W_{x\mathrm{l}}}{\mathrm{d}\eta _{l^{2}}}\left( \!\frac{1}{4}{\text{ Gr }}_{x{\text{ l},\mathrm{s}}}^{\prime }\!\right) ^{1/2}x^{-2}\\&\quad +\frac{\mathrm{d}\mu _\mathrm{l}}{\mathrm{d}\eta _\mathrm{l}}\left( \!\frac{1}{4}{\text{ Gr }}_{x\mathrm{v}},\text{ ms }\!\right) ^{1/4}x^{-1}2\sqrt{gx}\left( \frac{\rho _{\mathrm{l},\mathrm{w}}-{\rho _{\mathrm{m},\infty }}}{\rho _{\text{ l},\mathrm{s}}}\!\right) ^{1/2}\frac{\mathrm{d}W_{x\mathrm{l}}}{\mathrm{d}\eta _\mathrm{l}}x^{-1}\left( \!\frac{1}{4}{\text{ Gr }}_{x{\text{ l},\mathrm{s}}}^{\prime }\!\right) ^{-1/4}\\&\quad +g\left( \rho _\mathrm{l}-\rho _{\mathrm{m},\infty }\right) \end{aligned}$$

The above equation is divided by \(g\frac{\rho _{\mathrm{l},\mathrm{w}} -\rho _{\mathrm{m},\infty } }{\rho _{\text{ l},\mathrm{s}} }\), and simplified to

$$\begin{aligned}&\rho _\mathrm{l}\left[ 2W_{x\mathrm{l}}\left( W_{x\mathrm{l}} -\frac{1}{2}\eta _\mathrm{l} \frac{\mathrm{d}W_{x\mathrm{l}}}{\mathrm{d}\eta _\mathrm{l}}\right) +2W_{y\mathrm{l}} 2\frac{\mathrm{d}W_{x\mathrm{l}}}{\mathrm{d}\eta _\mathrm{l}}\right] \\&=\mu _\mathrm{l} 2\frac{\mathrm{d}^{2} W_{x\mathrm{l}}}{\mathrm{d}\eta _\mathrm{l}^2}\left( {\frac{1}{4}}\frac{1}{\nu _{\text{ l},\mathrm{s}}^2}\right) ^{1/2}+\frac{\mathrm{d}\mu _{\text{ v},\mathrm{w}}}{\mathrm{d}\eta _\mathrm{m}}2\frac{\mathrm{d}W_{x\mathrm{l}}}{\mathrm{d}\eta _\mathrm{l} }\left( {\frac{1}{4}}\frac{1}{{\nu _{\text{ l},\mathrm{s}}}^2}\right) ^{1/2}+\frac{\left( \rho _\mathrm{l} -\rho _{\mathrm{m},\infty } \right) }{\frac{\rho _{\mathrm{l},\mathrm{w}}-\rho _{\mathrm{m},\infty } }{\rho _{\text{ l},\mathrm{s}} }} \end{aligned}$$

The above equation is divided by \(\frac{\nu _{\text{ l},\mathrm{s}} }{\mu _\mathrm{l} }\), and further simplified to

$$\begin{aligned}&\frac{\nu _{\text{ l},\mathrm{s}}}{\nu _\mathrm{l}}\left[ W_{x\mathrm{l}}\left( 2W_{x\mathrm{l}}-\eta _\mathrm{l}\frac{\mathrm{d}W_{x\mathrm{l}}}{\mathrm{d}\eta _\mathrm{l}}\right) +4W_{y\mathrm{l}}\frac{\mathrm{d}W_{x\mathrm{l}}}{\mathrm{d}\eta _\mathrm{l}}\right] \end{aligned}$$
$$\begin{aligned} \quad =\frac{\mathrm{d}^{2} W_{x\mathrm{l}}}{\mathrm{d}\eta _\mathrm{l}^2 }+\frac{1}{\mu _\mathrm{l} }\frac{\mathrm{d}\mu _\mathrm{l}}{\mathrm{d}\eta _\mathrm{l}}\frac{\mathrm{d}W_{x\mathrm{l}}}{\mathrm{d}\eta _\mathrm{l} }+\frac{\mu _{\text{ l},\mathrm{s}}}{\mu _\mathrm{l}}\frac{\left( \rho _\mathrm{l}-\rho _{\mathrm{m},\infty }\right) }{\rho _{\mathrm{l},\mathrm{w}}-\rho _{\mathrm{m},\infty }} \end{aligned}$$
(18.29)

1.1.3 Similarity Transformation of Eq. (18.3)

Equation (18.3) can be rewritten as

$$\begin{aligned} \rho _\mathrm{l}c_{p_\mathrm{l}}\left( w_{x\mathrm{l}}\frac{\partial t_\mathrm{l}}{\partial x}+w_{y\mathrm{l}}\frac{\partial t_\mathrm{l}}{\partial x}\right) =\lambda _\mathrm{l}\frac{\partial ^{2}t_\mathrm{l}}{\partial y^{2}}+\frac{\partial \lambda _\mathrm{l}}{\partial _{y}}\frac{\partial t_\mathrm{l}}{\partial y} \end{aligned}$$
(A11)

where

$$\begin{aligned} \frac{\partial t_\mathrm{l} }{\partial x}=(t_\mathrm{w} -t_{\text{ s},\text{ int }} )\frac{\mathrm{d}\theta _\mathrm{l} }{\mathrm{d}\eta _\mathrm{l} }\frac{\partial \eta _\mathrm{l} }{\partial x} \end{aligned}$$

With Eq. (A2) the above equation becomes

$$\begin{aligned} \frac{\partial t_\mathrm{l} }{\partial x}=-\frac{1}{4}\eta _\mathrm{l}x^{-1}(t_\mathrm{w} -t_{\text{ s},\text{ int }} )\frac{\mathrm{d}\theta _\mathrm{l} }{\mathrm{d}\eta _\mathrm{l} } \end{aligned}$$
(A12)

In addition

$$\begin{aligned} \frac{\partial t_\mathrm{l} }{\partial y}=-(t_\mathrm{w} -t_{\text{ s},\text{ int }} )\frac{\mathrm{d}\theta _\mathrm{l}}{\mathrm{d}\eta _\mathrm{l} }\left( \frac{1}{4}{\text{ Gr }}_{x{\text{ l},\mathrm{s}}}^{\prime }\right) ^{1/4}x^{-2} \end{aligned}$$
(A13)
$$\begin{aligned} \frac{\partial ^{2}t_\mathrm{l}}{\partial y^{2}}=(t_\mathrm{w} -t_{\text{ s},\text{ int }} )\frac{\mathrm{d}^{2}\theta _\mathrm{l} }{\mathrm{d}\eta _\mathrm{l}^{2}}\left( \frac{1}{4}{\text{ Gr }}_{x{\text{ l},\mathrm{s}}}^{\prime }\right) ^{1/2}x^{-2} \end{aligned}$$
(A14)
$$\begin{aligned} \frac{\partial \lambda _\mathrm{l}}{\partial y}=-\frac{\mathrm{d}\lambda _\mathrm{l}}{\mathrm{d}\eta _\mathrm{l} }\left( \frac{1}{4}{\text{ Gr }}_{x{\text{ l},\mathrm{s}}}^{\prime }\right) ^{1/4}x^{-1} \end{aligned}$$
(A15)

With (A12)–(A15), and (18.20) and (18.21), Eq. (A11) is changed to

$$\begin{aligned}&\rho _\mathrm{l}c_{p_\mathrm{l}}\left[ -2\sqrt{gx}\left( \frac{\rho _{\mathrm{l},\mathrm{w}}-{\rho _{\mathrm{v},\mathrm{m}\infty }}}{\rho _{\text{ l},\mathrm{s}}}\right) ^{1/2}W_{x\mathrm{l}}(t_\mathrm{w}-t_{\text{ s},\text{ int }})\frac{\mathrm{d}\theta _\mathrm{l}}{\mathrm{d}\eta _\mathrm{l}}\left( \frac{1}{4}\right) \eta _\mathrm{l}x^{-1}\right. \\&\quad \left. +2\sqrt{gx}\left( \frac{\rho _{\mathrm{l},\mathrm{w}}-{\rho _{\mathrm{v},\mathrm{m}\infty }}}{\rho _{\text{ l},\mathrm{s}}}\right) ^{1/2}\left( \frac{1}{4}{\text{ Gr }}_{x\mathrm{l},\mathrm{m}\infty }\right) ^{-1/4}W_{y,\mathrm{l}}(t_\mathrm{w}-t_{\text{ s},\text{ int }})\frac{\mathrm{d}\theta _\mathrm{l}}{\mathrm{d}\eta _\mathrm{l}}\right. \\&\quad \left. \left( \frac{1}{4}{\text{ Gr }}_{x{\text{ l},\mathrm{s}}}\right) ^{1/4}x^{-1}\right] \\&=\lambda _\mathrm{l}(t_\mathrm{w}-t_{\text{ s},\text{ int }})\frac{\mathrm{d}^{2}\theta _\mathrm{l}}{\mathrm{d}\eta _\mathrm{l}^{2}}\left( \frac{1}{4}{\text{ Gr }}_{x{\text{ l},\mathrm{s}}}\right) ^{1/2}x^{-2}+\frac{\mathrm{d}\lambda _\mathrm{l}}{\mathrm{d}\eta _\mathrm{l}}\left( \frac{1}{4}{\text{ Gr }}_{x{\text{ l},\mathrm{s}}}\right) ^{1/4}x^{-1}(t_\mathrm{w}-t_{\text{ s},\text{ int }})\\&\quad \times \frac{\mathrm{d}\theta _\mathrm{l}}{\mathrm{d}\eta _\mathrm{l}}\left( \frac{1}{4}{\text{ Gr }}_{x{\text{ l},\mathrm{s}}}\right) ^{1/4}x^{-1} \end{aligned}$$

The above equation is divided by \((T_\mathrm{w} -T_\mathrm{s})\), and simplified to

$$\begin{aligned}&\rho _\mathrm{l}c_{p_\mathrm{l}}\left[ -2\sqrt{gx}\left( \frac{\rho _{\mathrm{l},\mathrm{w}}-{\rho _{\mathrm{m},\infty }}}{\rho _{\text{ l},\mathrm{s}}}\right) ^{1/2}W_{x\mathrm{l}}\frac{\mathrm{d}\theta _\mathrm{l}}{\mathrm{d}\eta _\mathrm{l}}\left( \frac{1}{4}\right) \eta _\mathrm{l}x^{-1}\right. \\&\left. +2\sqrt{gx}\left( \frac{\rho _{\mathrm{l},\mathrm{w}}-{\rho _{\mathrm{m},\infty }}}{\rho _{\text{ l},\mathrm{s}}}\right) ^{1/2}W_{y,\mathrm{l}}\frac{\mathrm{d}\theta _\mathrm{l}}{\mathrm{d}\eta _\mathrm{l}}x^{-1}\right] \\&\quad =\lambda _\mathrm{l}\frac{\mathrm{d}^{2}\theta _\mathrm{l}}{\mathrm{d}\eta _\mathrm{l}^{2}}\left( \frac{1}{4}{\text{ Gr }}_{x{\text{ l},\mathrm{s}}}\right) ^{1/2}x^{-2}+\frac{\mathrm{d}\lambda _\mathrm{l}}{\mathrm{d}\eta _\mathrm{l}}\left( \frac{1}{4}{\text{ Gr }}_{x{\text{ l},\mathrm{s}}}\right) ^{1/4}x^{-1}\frac{\mathrm{d}\theta _\mathrm{l}}{\mathrm{d}\eta _\mathrm{l}}\left( \frac{1}{4}{\text{ Gr }}_{x{\text{ l},\mathrm{s}}}\right) ^{1/4}x^{-1} \end{aligned}$$

With definition of \({\text{ Gr }}_{x{\text{ l},\mathrm{s}}}\), the above equation is further simplified to

$$\begin{aligned}&\rho _\mathrm{l}c_{p_\mathrm{l}}\left[ -2\sqrt{gx}\left( \frac{\rho _{\mathrm{l},\mathrm{w}}-{\rho _{\mathrm{m},\infty }}}{\rho _{\text{ l},\mathrm{s}}}\right) ^{1/2}W_{x\mathrm{l}}\frac{\mathrm{d}\theta _\mathrm{l}}{\mathrm{d}\eta _\mathrm{l}}\left( \frac{1}{4}\right) \eta _\mathrm{l}x^{-1}\right. \\&\qquad \qquad \left. +2\sqrt{gx}\left( \frac{\rho _{\mathrm{l},\mathrm{w}}-{\rho _{\mathrm{m},\infty }}}{\rho _{\text{ l},\mathrm{s}}}\right) ^{1/2}W_{y,\mathrm{l}}\frac{\mathrm{d}\theta _\mathrm{l}}{\mathrm{d}\eta _\mathrm{l}}x^{-1}\right] \\&\quad {} =\lambda _\mathrm{l}\frac{\mathrm{d}^{2}\theta _\mathrm{l}}{\mathrm{d}\eta _\mathrm{l}^{2}}\left( \frac{1}{4} \frac{g\left( \rho _{\mathrm{l},\mathrm{w}}-{\rho _{\mathrm{m},\infty }}\right) x^{3}}{{\nu _{\text{ l},\mathrm{s}}}^{2}\rho _{\text{ l},\mathrm{s}}}\right) ^{1/2}x^{-2}\\&\qquad \quad \; +\frac{\mathrm{d}\lambda _\mathrm{l}}{\mathrm{d}\eta _\mathrm{l}}x^{-1}\frac{\mathrm{d}\theta _\mathrm{l}}{\mathrm{d}\eta _\mathrm{l}} \left( \frac{1}{4}\frac{g\left( \rho _{\mathrm{l},\mathrm{w}}-{\rho _{\mathrm{m},\infty }}\right) x^{3}}{{\nu _{\text{ l},\mathrm{s}}}^{2}\rho _{\text{ l},\mathrm{s}}}\right) ^{1/2}x^{-1} \end{aligned}$$

The above equation is divided by \([\frac{g(\rho _{\mathrm{l},\mathrm{w}}-\rho _{\mathrm{m},\infty } )}{x\rho _{\text{ l},\mathrm{s}} }]^{1/2}\), and is further simplified to

$$\begin{aligned} {}\rho _\mathrm{l} c_{p_\mathrm{l} } \left[ \!-2W_{x\mathrm{l}} \frac{\mathrm{d}\theta _\mathrm{l} }{\mathrm{d}\eta _\mathrm{l} }\!\left( \!\frac{1}{4}\!\right) \eta _\mathrm{l}+2W_{y,\mathrm{l}} \frac{\mathrm{d}\theta _\mathrm{l} }{\mathrm{d}\eta _\mathrm{l} }\right] = \lambda _\mathrm{l} \frac{\mathrm{d}^{2}\theta _\mathrm{l} }{\mathrm{d}\eta _\mathrm{l} ^2}\!\left( \!\frac{1}{4}\frac{1}{{\nu _{\text{ l},\mathrm{s}}}^{2}}\!\right) ^{\!1/2}+ \frac{\mathrm{d}\lambda _\mathrm{l} }{\mathrm{d}\eta _\mathrm{l} }\frac{\mathrm{d}\theta _\mathrm{l} }{\mathrm{d}\eta _\mathrm{l} }\!\left( \!\frac{1}{4}\frac{1}{{\nu _{\text{ l},\mathrm{s}}}^{2}}\right) ^{\!1/2} \end{aligned}$$

The above equation is divided by \(2\frac{\nu _{\text{ l},\mathrm{s}} }{\lambda _\mathrm{l} }\), and is further simplified to

$$\begin{aligned} \frac{\rho _\mathrm{l} c_{p_\mathrm{l}} \nu _{\text{ l},\mathrm{s}} }{\lambda _\mathrm{l} }\left[ -W_{x\mathrm{l}} \frac{\mathrm{d}\theta _\mathrm{l} }{\mathrm{d}\eta _\mathrm{l} }\eta _\mathrm{l}+4W_{y\mathrm{l}} \frac{\mathrm{d}\theta _\mathrm{l} }{\mathrm{d}\eta _\mathrm{l} }\right] =\frac{\mathrm{d}^{2}\theta _\mathrm{l} }{\mathrm{d}\eta _\mathrm{l} ^2}+\frac{1}{\lambda _\mathrm{l} }\frac{\mathrm{d}\lambda _\mathrm{l} }{\mathrm{d}\eta _\mathrm{l} }\frac{\mathrm{d}\theta _\mathrm{l} }{\mathrm{d}\eta _\mathrm{l} } \end{aligned}$$

i.e.,

$$\begin{aligned} \Pr \nolimits _\mathrm{l} \frac{\nu _{\text{ l},\mathrm{s}}}{\nu _\mathrm{l}}(-\eta _\mathrm{l}{W}_{x\mathrm{l}} +4W_{y\mathrm{l}} )\frac{\mathrm{d}\theta _\mathrm{l}}{\mathrm{d}\eta _\mathrm{l}}=\frac{\mathrm{d}^{2}\theta _\mathrm{l}}{\mathrm{d}\eta _\mathrm{l}^{2}}+\frac{1}{\lambda _\mathrm{l}}\frac{\mathrm{d}\lambda _\mathrm{l}}{\mathrm{d}\eta _\mathrm{l}}\frac{\mathrm{d}\theta _\mathrm{l}}{\mathrm{d}\eta _\mathrm{l}} \end{aligned}$$
(18.30)

1.2 For Vapor–Gas Mixture Film

With the assumed similarity transformation variables for vapor–gas mixture film shown in Eqs. (18.22)–(18.27), the governing partial differential equations (18.4)–(18.7) for vapor–gas mixture film are transformed equivalently into the following ones, respectively:  

1.2.1 Similarity Transformation of Eq. (18.4)

Equation (18.4) is rewritten as

$$\begin{aligned} W_{x\mathrm{m}}\frac{\partial \rho _\mathrm{m}}{\partial x}+W_{y\mathrm{m}}\frac{\partial \rho _\mathrm{m}}{\partial y}+\rho _\mathrm{m}\left[ \frac{\partial W_{x\mathrm{m}}}{\partial x}+\frac{\partial W_{y\mathrm{m}}}{\partial y}\right] =0 \end{aligned}$$
(A16)

With Eq. (18.25) we have

$$\begin{aligned} \frac{\partial W_{x\mathrm{m}}}{\partial x}=\sqrt{\frac{g}{x}}(\rho _{\text{ m}, \mathrm{s}}/{\rho _{\mathrm{m},\infty }}-1)^{1/2}W_{x\mathrm{m}}+2\sqrt{gx}(\rho _{\text{ m}, \mathrm{s}}/{\rho _{\mathrm{m},\infty }}-1)^{1/2}\frac{\mathrm{d}W_{x\mathrm{m}}}{\mathrm{d}\eta _\mathrm{m}}\frac{\partial \eta _\mathrm{m}}{\partial x} \end{aligned}$$

Similar to the derivation for Eq. (A2), we have

$$\begin{aligned} \frac{\partial \eta _\mathrm{m}}{\partial x}==-\frac{1}{4}x^{-1}\eta _\mathrm{m} \end{aligned}$$
(A17)

Then,

$$\begin{aligned} \frac{\partial w_{x\mathrm{m}}}{\partial x}=\sqrt{\frac{g}{x}} \left( \rho _{\text{ m}, \mathrm{s}} /{\rho _{\mathrm{m},\infty }}-1\right) ^{1/2}\left( W_{x\mathrm{m}} -\frac{1}{2}\eta _\mathrm{m} \frac{\mathrm{d}W_{x\mathrm{m}}}{\mathrm{d}\eta _\mathrm{m}}\right) \end{aligned}$$
(A18)

With Eq. (18.26) we have

$$\begin{aligned} \frac{\partial w_{y\mathrm{m}}}{\partial y}&=2\sqrt{g x} (\rho _{\text{ m}, \mathrm{s}} /\rho _{\mathrm{m},\infty } -1)^{1/2}\left( \frac{1}{4}{\text{ Gr }}_{x\mathrm{m},\infty }\right) ^{-1/4} \frac{\mathrm{d}W_{y\mathrm{m}}}{\mathrm{d}\eta _\mathrm{m}}\frac{\partial \eta _\mathrm{m}}{\partial y} \nonumber \\&=2\sqrt{g x} (\rho _{\text{ m}, \mathrm{s}} /\rho _{\mathrm{m},\infty }-1)^{1/2}\left( \frac{1}{4}{\text{ Gr }}_{x\mathrm{m},\infty }\right) ^{-1/4} \frac{\mathrm{d}W_{y\mathrm{m}} }{\mathrm{d}\eta _\mathrm{m}}x^{-1}\left( \frac{1}{4}{\text{ Gr }}_{x\mathrm{m},\infty }\right) ^{1/4} \end{aligned}$$
$$\begin{aligned} =2\sqrt{\frac{g}{x}} (\rho _{\text{ m}, \mathrm{s}} /\rho _{\mathrm{m},\infty }-1)^{1/2}\frac{\mathrm{d}W_{y\mathrm{m}}}{\mathrm{d}\eta _\mathrm{m}} \end{aligned}$$
(A19)

In addition

$$\begin{aligned} \frac{\partial \rho _\mathrm{m}}{\partial x}=\frac{\mathrm{d}\rho _\mathrm{m}}{\mathrm{d}\eta _\mathrm{m}}\frac{\partial \eta _\mathrm{m}}{\partial {x}} \end{aligned}$$

With Eq. (A17), the above equation becomes

$$\begin{aligned} \frac{\partial \rho _\mathrm{m}}{\partial x}=-\frac{1}{4}x^{-1}\eta _\mathrm{m}\frac{\mathrm{d}\rho _\mathrm{m}}{\mathrm{d}\eta _\mathrm{m}} \end{aligned}$$
(A20)

While,

$$\begin{aligned} \frac{\partial \rho _\mathrm{m}}{\partial y}&=\frac{\mathrm{d}\rho _\mathrm{m}}{\mathrm{d}\eta _\mathrm{m}}\frac{\partial \eta _\mathrm{m}}{\partial y} \nonumber \\&=\frac{\mathrm{d}\rho _\mathrm{m}}{\mathrm{d}\eta _\mathrm{m}}\left( \frac{1}{4}{\text{ Gr }}_{x\mathrm{m},\infty }\right) ^{1/4}x^{-1} \end{aligned}$$
(A21)

With Eqs. (A18)–(A21), and (18.25) and (18.26), Eq. (A16) is changed to

$$\begin{aligned}&{}-2\sqrt{g x}(\rho _{\text{ m}, \mathrm{s}}/\rho _{\mathrm{m},\infty }-1)^{1/2}W_{x\mathrm{m}} \frac{1}{4}x^{-1}\eta _\mathrm{m}\frac{\mathrm{d}\rho _\mathrm{m} }{\mathrm{d}\eta _\mathrm{m}} \\&{}+2\sqrt{g x}(\rho _{\text{ m}, \mathrm{s}}/\rho _{\mathrm{m},\infty }-1)^{1/2}\left( \frac{1}{4}{\text{ Gr }}_{x\mathrm{m},\infty }\right) ^{-1/4}W_{y\mathrm{m}} \frac{\mathrm{d}\rho _{\mathrm{v},\mathrm{m}}}{\mathrm{d}\eta _\mathrm{m}}\left( \frac{1}{4}{\text{ Gr }}_{x\mathrm{m},\mathrm{s}}\right) ^{1/4}x^{-1} \\&{}+\rho _\mathrm{m}\left[ \!\sqrt{\frac{g}{x}}(\rho _{\text{ m}, \mathrm{s}}/\rho _{\mathrm{m},\infty }{-}1)^{1/2}\left( W_{x\mathrm{m}}{-} \frac{1}{2}\eta _\mathrm{m}\frac{\mathrm{d}W_{x,\mathrm m}}{\mathrm{d}\eta _\mathrm{m}}\right) \right. \\&{}+2\left. \sqrt{\frac{g}{x}}(\rho _{\mathrm{m},\mathrm{s}}/\rho _{\mathrm{m},\infty }{-}1)^{1/2} \frac{\mathrm{d}W_{y\mathrm{m}}}{\mathrm{d}\eta _\mathrm{m}}\!\right] =0 \end{aligned}$$

The above equation is divided by \(\rho _\mathrm{m}\sqrt{\frac{g}{x}}(\rho _{\text{ m}, \mathrm{s}} /\rho _{\mathrm{m},\infty } -1)^{1/2}\), and simplified to

$$\begin{aligned} W_{x\mathrm{m}}-\frac{1}{2}\eta _\mathrm{m}\frac{\mathrm{d}W_{x\mathrm{m}}}{\mathrm{d}\eta _\mathrm{m}}+\frac{\mathrm{d}W_{y\mathrm{m}}}{\mathrm{d}\eta _\mathrm{m}}-\frac{1}{\rho _\mathrm{m}}\frac{\mathrm{d}\rho _\mathrm{m}}{\mathrm{d}\eta _\mathrm{m}}\left( \frac{1}{2}\eta _\mathrm{m}W_{x\mathrm{m}}-2W_{y\mathrm{m}}\right) =0 \end{aligned}$$

i.e.,

$$\begin{aligned} 2W_{x\mathrm{m}} -\eta _\mathrm{m} \frac{\mathrm{d}W_{x\mathrm{m}} }{\mathrm{d}\eta _\mathrm{m} }+4\frac{\mathrm{d}W_{y\mathrm{m}} }{\mathrm{d}\eta _\mathrm{m} }-\frac{1}{\rho _\mathrm{m} }\frac{\mathrm{d}\rho _\mathrm{m} }{\mathrm{d}\eta _\mathrm{m} }(\eta _\mathrm{m} W_{x\mathrm{m}} -4W_{y\mathrm{m}} )=0 \end{aligned}$$
(18.31)

1.2.2 Similarity Transformation of Eq. (18.5)

Equation (18.5) is changed to

$$\begin{aligned} \rho _\mathrm{m} \left( w_{x\mathrm{m}} \frac{\partial w_{x\mathrm{m}} }{\partial x}+w_{y\mathrm{m}} \frac{\partial w_{x\mathrm{m}} }{\partial y}\right) =\mu _\mathrm{m} \frac{\partial ^{2}w_{x\mathrm{m}} }{\partial y^2}+\frac{\partial \mu _\mathrm{m} }{\partial y}\frac{\partial w_{x\mathrm{m}} }{\partial y}+g(\rho _\mathrm{m} -\rho _{\mathrm{m},\infty } ) \end{aligned}$$
(A22)

With Eqs. (18.22) and (18.25), we have

$$\begin{aligned} \frac{\partial w_{x\mathrm{m}}}{\partial y}=2\sqrt{gx} (\rho _{\text{ m}, \mathrm{s}}/\rho _{\mathrm{m},\infty }-1)^{1/2} \frac{\mathrm{d}W_{x\mathrm{m}}}{\mathrm{d}\eta _\mathrm{m}}\left( \frac{1}{4}{\text{ Gr }}_{x\mathrm{m},\infty }\right) ^{1/4}x^{-1} \end{aligned}$$
(A23)
$$\begin{aligned} \frac{\partial ^{2} w_{x\mathrm{m}} }{\partial y^{2} }=2\sqrt{gx}(\rho _{\text{ m}, \mathrm{s}}/\rho _{\mathrm{m},\infty }-1)^{1/2} \frac{\mathrm{d}^{2} W_{x\mathrm{m}} }{\mathrm{d}\eta _\mathrm{m}^{2} }\left( {\frac{1}{4}}{\text{ Gr }}_{x\mathrm{m},\infty }\right) ^{1/2}x^{-2} \end{aligned}$$
(A24)

Additionally,

$$\begin{aligned} \frac{\partial \mu _\mathrm{m} }{\partial y}=\frac{\mathrm{d}\mu _\mathrm{m}}{\mathrm{d}\eta _\mathrm{m} }\left( \frac{1}{4}{\text{ Gr }}_{x\mathrm{m},\infty }\right) ^{1/4}x^{-1} \end{aligned}$$
(A25)

With Eqs. (A18), (A23)–(A25), and (18.25) and (18.26), Eq. (A22) is changed to

$$\begin{aligned}&\rho _\mathrm{m} \left[ 2\sqrt{gx} (\rho _{\text{ m}, \mathrm{s}} /\rho _{\mathrm{m},\infty } -1)^{1/2}W_{x\mathrm{m}} \sqrt{\frac{g}{x}} \left( \rho _{\text{ m}, \mathrm{s}} /\rho _{\mathrm{m},\infty } -1\right) ^{1/2}\right. \\&\qquad \;\times \left( W_{x\mathrm{m}}-\frac{1}{2}\eta _\mathrm{m} \frac{\mathrm{d}W_{x\mathrm{m}} }{\mathrm{d}\eta }\right) +2\sqrt{gx} (\rho _{\text{ m}, \mathrm{s}} /\rho _{\mathrm{m},\infty }-1)^{1/2}\left( \frac{1}{4}{\text{ Gr }}_{x\mathrm{m},\infty }\right) ^{-1/4} \\&\qquad \;\times \left. W_{y\mathrm{m}} 2\sqrt{gx} (\rho _{\text{ m}, \mathrm{s}} /\rho _{\mathrm{m},\infty }-1)^{1/2} \frac{\mathrm{d}W_{x\mathrm{m}} }{\mathrm{d}\eta _\mathrm{m} }x^{-1} \left( \frac{1}{4} {\text{ Gr }}_{x\mathrm{m},\infty }\right) ^{1/4} \right] \\&=\mu _\mathrm{m} 2\sqrt{gx} (\rho _{\text{ m}, \mathrm{s}} /\rho _{\mathrm{m},\infty } -1)^{1/2} \frac{\mathrm{d}^{2} W_{x\mathrm{m}} }{{\mathrm{d}\eta _\mathrm{m}}^{2}}\left( \frac{1}{4}{\text{ Gr }}_{x\mathrm{m},\infty }^{\prime }\right) ^{1/2}x^{-2} \\&\quad \;+\frac{\mathrm{d}\mu _\mathrm{m} }{\mathrm{d}\eta _\mathrm{m} }\left( \frac{1}{4}{\text{ Gr }}_{x\mathrm{m},\infty } \right) ^{1/4}x^{-1}2\sqrt{gx} (\rho _{\text{ m}, \mathrm{s}} /\rho _{\mathrm{m},\infty } -1)^{1/2}\\&\quad \;\times \frac{\mathrm{d}W_{x\mathrm{m}} }{\mathrm{d}\eta _\mathrm{m} }x^{-1} \left( \frac{1}{4}{\text{ Gr }}_{x\mathrm{m},\infty } \right) ^{1/4} +g(\rho _\mathrm{m} -\rho _{\mathrm{m},\infty }) \end{aligned}$$

With the definition of \({\text{ Gr }}_{x\mathrm{m},\infty }\), the above equation is changed to

$$\begin{aligned}&\rho _\mathrm{m} \left[ 2\sqrt{gx} (\rho _{\text{ m}, \mathrm{s}} /\rho _{\mathrm{m},\infty } -1)W_{x\mathrm{m}} \sqrt{\frac{g}{x}} \left( W_{x\mathrm{m}} -\frac{1}{2}\eta _\mathrm{m} \frac{\mathrm{d}W_{x\mathrm{m}} }{\mathrm{d}\eta }\right) \right. \\&\qquad \left. \,+2\sqrt{gx} \left( \rho _{\text{ m}, \mathrm{s}} /\rho _{\mathrm{m},\infty } -1\right) W_{y\mathrm{m}} 2\sqrt{gx} \frac{\mathrm{d}W_{x\mathrm{m}} }{\mathrm{d}\eta _\mathrm{m} }x^{-1} \right] \\&=\mu _\mathrm{m} 2\sqrt{gx} \left( \rho _{\text{ m}, \mathrm{s}} /\rho _{\mathrm{m},\infty } -1\right) ^{1/2} \frac{\mathrm{d}^{2} W_{x\mathrm{m}} }{{\mathrm{d}\eta _\mathrm{m}}^{2}}\left( \frac{1}{4}\frac{g(\rho _{\text{ m}, \mathrm{s}} /\rho _{\mathrm{m},\infty } -1)x^3 }{{\nu _{\mathrm{m},\infty }}^{2}}\right) ^{1/2} x^{-2} \\&\;+\frac{\mathrm{d}\mu _\mathrm{m} }{\mathrm{d}\eta _\mathrm{m} }\left( \frac{1}{4}\frac{g\left( \rho _{\text{ m}, \mathrm{s}} /\rho _{\mathrm{m},\infty } -1\right) x^3 }{{\nu _{\mathrm{m},\infty }}^{2}}\right) ^{1/2}x^{-1}2\sqrt{gx} \left( \rho _{\text{ m}, \mathrm{s}} /\rho _{\mathrm{m},\infty } -1\right) ^{1/2}\\&\;\times \frac{\mathrm{d}W_{x\mathrm{m}} }{\mathrm{d}\eta _\mathrm{m} }x^{-1} +g\left( \rho _\mathrm{m} -\rho _{\mathrm{m},\infty } \right) \end{aligned}$$

The above equation is divided by \(\frac{\mu _\mathrm{m}}{\nu _{\mathrm{m},\infty }}(\rho _{\text{ m}, \mathrm{s}}/\rho _{\mathrm{m},\infty }-1)\), and simplified to

$$\begin{aligned}&\frac{\nu _{\mathrm{m},\infty } \rho _\mathrm{m} }{\mu _\mathrm{m} }\left[ W_{x\mathrm{m}} \left( 2W_{x\mathrm{m}} -\eta _\mathrm{m} \frac{\mathrm{d}W_{x\mathrm{m}} }{\mathrm{d}\eta }\right) +4W_{y\mathrm{m}} \frac{\mathrm{d}W_{x\mathrm{m}} }{\mathrm{d}\eta _\mathrm{v} }\right] \\&=\frac{\mathrm{d}^{2} W_{x\mathrm{m}} }{{\mathrm{d}\eta _\mathrm{m}}^{2} }+\frac{1}{\mu _\mathrm{m} }\frac{\mathrm{d}\mu _\mathrm{m} }{\mathrm{d}\eta _\mathrm{m} }\frac{\mathrm{d}W_{x\mathrm{m}} }{\mathrm{d}\eta _\mathrm{m} }+\frac{\nu _{\mathrm{m},\infty } \rho _{\mathrm{m},\infty } }{\mu _\mathrm{m} }\frac{\rho _\mathrm{m} -\rho _{\mathrm{m},\infty } }{\rho _{\text{ m}, \mathrm{s}} -\rho _{\mathrm{m},\infty } } \end{aligned}$$

i.e.,

$$\begin{aligned}&\frac{\nu _{\mathrm{m},\infty }}{\nu _\mathrm{m}}\left[ W_{x\mathrm{m}}\left( 2W_{x\mathrm{m}} -\eta _\mathrm{m} \frac{\mathrm{d}W_{x\mathrm{m}} }{\mathrm{d}\eta _\mathrm{m}}\right) +4W_{y\mathrm{m}}\frac{\mathrm{d}W_{x\mathrm{m}}}{\mathrm{d}\eta _\mathrm{m}}\right] \nonumber \\&\quad {}= \frac{\mathrm{d}^{2}W_{x\mathrm{m}}}{\mathrm{d}\eta _\mathrm{m}^{2}}+ \frac{1}{\mu _\mathrm{m}} \frac{\mathrm{d}\mu _\mathrm{m}}{\mathrm{d}\eta _\mathrm{m}} \frac{\mathrm{d}W_{x\mathrm{m}} }{\mathrm{d}\eta _\mathrm{m} }+ \frac{\mu _{\mathrm{m},\infty }}{\mu _\mathrm{m}}\cdot \frac{\rho _\mathrm{m} -\rho _{\mathrm{m},\infty } }{\rho _{\text{ m}, \mathrm{s}} -\rho _{\mathrm{m},\infty }} \end{aligned}$$

 

1.2.3 Similarity Transformation of Eq. (18.6)

Equation (18.6) is changed to

$$\begin{aligned} \rho _\mathrm{m} Cp_\mathrm{m} \left( w_{x\mathrm{m}} \frac{\partial t}{\partial x}+w_{y\mathrm{m}} \frac{\partial t}{\partial y}\right) =\,&\lambda _\mathrm{m} \frac{\partial ^{2}t}{\partial y^2}+\frac{\partial \lambda _\mathrm{m} }{\partial y}\cdot \frac{\partial t}{\partial y}-D_\mathrm{v} (c_{p_\mathrm{v}}-c_{p_\mathrm{g}} )\nonumber \\&\;\times \left[ \rho _\mathrm{m} \frac{\partial C_{\text{ mv }} }{\partial y}\frac{\partial t}{\partial y}+t\rho _\mathrm{m} \frac{\partial ^{2}C_{\text{ mv }} }{\partial y^{2}}+t\frac{\partial C_{\text{ mv }} }{\partial y}\frac{\partial \rho _\mathrm{m} }{\partial y}\right] \end{aligned}$$
(A26)

With Eq. (18.24) we have

$$\begin{aligned} \frac{\partial t}{\partial x}=(t_{\text{ s},\text{ int }} -t_{\infty } )\frac{\mathrm{d}\theta _\mathrm{m} }{\mathrm{d}\eta _\mathrm{m} }\frac{\partial \eta _\mathrm{m} }{\partial x} \end{aligned}$$

With Eq. (A17), the above equation becomes

$$\begin{aligned} \frac{\partial t}{\partial x}==-\frac{1}{4}\eta _\mathrm{m}x^{-1}(t_{\text{ s},\text{ int }} -t_{\infty } )\frac{\mathrm{d}\theta _\mathrm{m} }{\mathrm{d}\eta _\mathrm{l} } \end{aligned}$$
(A27)

With Eqs. (18.22) and (18.24) we have

$$\begin{aligned} \frac{\partial t}{\partial y}=(t_{\text{ s},\text{ int }} -t_{\infty } )\frac{\mathrm{d}\theta _\mathrm{m} }{\mathrm{d}\eta _\mathrm{m} }\left( \frac{1}{4}{\text{ Gr }}_{x\mathrm{m},\infty }\right) ^{1/4}x^{-1} \end{aligned}$$
(A28)
$$\begin{aligned} \frac{\partial ^{2}t}{\partial y^{2}}=(t_{\text{ s},\text{ int }} -t_{\infty } )\frac{\mathrm{d}^{2}\theta _\mathrm{m} }{{\mathrm{d}\eta _\mathrm{m}}^{2}}\left( \frac{1}{4}{\text{ Gr }}_{x\mathrm{m},\infty }\right) ^{1/2}x^{-2} \end{aligned}$$
(A29)

With Eqs. (18.22) and (18.24) we have

$$\begin{aligned} \frac{\partial \lambda _\mathrm{m} }{\partial y}=\frac{\mathrm{d}\lambda _\mathrm{m} }{\mathrm{d}\eta _\mathrm{m} }\left( \frac{1}{4}{\text{ Gr }}_{x\mathrm{m},\infty }\right) ^{1/4}x^{-1} \end{aligned}$$
(A30)
$$\begin{aligned} \frac{\partial \rho _\mathrm{m} }{\partial y}=\frac{\mathrm{d}\rho _\mathrm{m} }{\mathrm{d}\eta _\mathrm{m} }\left( \frac{1}{4}{\text{ Gr }}_{x\mathrm{m},\infty }\right) ^{1/4}x^{-1} \end{aligned}$$
(A31)
$$\begin{aligned} \frac{\partial C_{\text{ mv }} }{\partial y}=\frac{\mathrm{d}C_{\text{ mv }} }{\mathrm{d}\eta _\mathrm{m} }\left( \frac{1}{4}{\text{ Gr }}_{x\mathrm{m},\infty }\right) ^{1/4}x^{-1} \end{aligned}$$
(A32)
$$\begin{aligned} \frac{\partial ^{2}C_{\text{ mv }} }{\partial y^{2}}=\frac{\mathrm{d}^{2}C_{\text{ mv }} }{{\mathrm{d}\eta _\mathrm{m}}^{2}}\left( \frac{1}{4}{\text{ Gr }}_{x\mathrm{m},\infty }\right) ^{1/2}x^{-2} \end{aligned}$$
(A33)

With Eqs. (A27)–(A31), Eq. (A26) is changed to

$$\begin{aligned} \rho _\mathrm{m} c_{p_\mathrm{m} }&\left[ -2\sqrt{gx} (\rho _{\text{ m}, \mathrm{s}} /\rho _{\mathrm{m},\infty } -1)^{1/2}W_{x\mathrm{m}} (t_{\text{ s},\text{ int }} -t_{\infty } )\frac{\mathrm{d}\theta _\mathrm{m} }{\mathrm{d}\eta _\mathrm{m} }\left( \frac{1}{4}\right) \eta _\mathrm{m} x^{-1}\right. \\&\quad \;+2\sqrt{gx} (\rho _{\text{ m}, \mathrm{s}} /\rho _{\mathrm{m},\infty } -1)^{1/2}\left( \frac{1}{4}{\text{ Gr }}_{x\mathrm{m},\infty }^{\prime }\right) ^{-1/4}\\&\quad \left. \;\times W_{y\mathrm{m}} (t_{\text{ s},\text{ int }}-t_\infty )\frac{\mathrm{d}\theta _\mathrm{m} }{\mathrm{d}\eta _\mathrm{m} }\left( \frac{1}{4}{\text{ Gr }}_{x\mathrm{m},\infty }\right) ^{1/4}x^{-1}\right] \\&=\lambda _\mathrm{m} (t_{\text{ s},\text{ int }} -t_\infty )\frac{\mathrm{d}^{2}\theta _\mathrm{m}}{{\mathrm{d}\eta _\mathrm{m}} ^{2}}\left( \frac{1}{4}{\text{ Gr }}_{x\mathrm{m},\infty }\right) ^{1/2}x^{-2}+\frac{\mathrm{d}\lambda _\mathrm{m} }{\mathrm{d}\eta _\mathrm{m} }\left( \frac{1}{4}{\text{ Gr }}_{x\mathrm{m},\infty }\right) ^{1/4}x^{-1}\\&\cdot (t_{\text{ s},\text{ int }} -t_\infty )\frac{\mathrm{d}\theta _\mathrm{m} }{\mathrm{d}\eta _\mathrm{m} }\left( \frac{1}{4}{\text{ Gr }}_{x\mathrm{m},\infty }\right) ^{1/4}x^{-1} -D_\mathrm{v} (c_{p_\mathrm{v}} -c_{p_\mathrm{g}} ) \\&\;\times \left[ \rho _\mathrm{m} \frac{\mathrm{d}C_{\text{ mv }} }{\mathrm{d}\eta _\mathrm{m} }\left( \frac{1}{4}{\text{ Gr }}_{x\mathrm{m},\infty }\right) ^{1/4}x^{-1}(t_{\text{ s},\text{ int }} -t_{\infty } )\frac{\mathrm{d}\theta _\mathrm{m} }{\mathrm{d}\eta _\mathrm{m} }\left( \frac{1}{4}{\text{ Gr }}_{x\mathrm{m},\infty }\right) ^{1/4}x^{-1}\right. \\&\qquad \;+t\rho _\mathrm{m} \frac{\mathrm{d}^{2}C_{\text{ mv }} }{{\mathrm{d}\eta _\mathrm{m}}^{2}}\left( \frac{1}{4}{\text{ Gr }}_{x\mathrm{m},\infty }\right) ^{1/2}x^{-2}+t\frac{\mathrm{d}C_{\mathrm{m},\mathrm{v}} }{\mathrm{d}\eta _\mathrm{m} }\left( \frac{1}{4}{\text{ Gr }}_{x\mathrm{m},\infty }\right) ^{1/4}x^{-1}\\&\qquad \left. \;\times \frac{\mathrm{d}\rho _\mathrm{m}}{\mathrm{d}\eta _\mathrm{m} }\left( \frac{1}{4}{\text{ Gr }}_{x\mathrm{m},\infty }\right) ^{1/4}x^{-1}\right] \end{aligned}$$

With definition of \({\text{ Gr }}_{x\mathrm{m},\infty }\), the above equation is changed to

$$\begin{aligned}&\rho _\mathrm{m} c_{p_\mathrm{m} } \left[ -2\sqrt{gx}(\rho _{\text{ m}, \mathrm{s}} /\rho _{\mathrm{m},\infty } -1)^{1/2}W_{x\mathrm{m}} (t_{\text{ s},\text{ int }} -T_{\infty })\frac{\mathrm{d}\theta _\mathrm{m}}{\mathrm{d}\eta _\mathrm{m} }\left( \frac{1}{4}\right) \eta _\mathrm{m}x^{-1} \right. \\&\qquad \qquad \left. +\,2\sqrt{gx} (\rho _{\text{ m}, \mathrm{s}} /\rho _{\mathrm{m},\infty } -1)^{1/2}W_{y\mathrm{m}}(t_{\text{ s},\text{ int }} -t_{\infty })\frac{\mathrm{d}\theta _\mathrm{m} }{\mathrm{d}\eta _\mathrm{m} }x^{-1}\right] \\&=\lambda _\mathrm{m} (t_{\text{ s},\text{ int }} -t_{\infty } )\frac{\mathrm{d}^{2}\theta _\mathrm{m} }{{\mathrm{d}\eta _\mathrm{m}}^{2}}\left( \frac{1}{4}\frac{g\left( \rho _{\text{ m}, \mathrm{s}} /\rho _{\mathrm{m},\infty }-1\right) x^{3} }{{\nu _{\mathrm{m},\infty }}^{2}}\right) ^{1/2}x^{-2}\\&\qquad \;+\frac{\mathrm{d}\lambda _\mathrm{m} }{\mathrm{d}\eta _\mathrm{v} }\left( \frac{1}{4}\frac{g\left( \rho _{\text{ m}, \mathrm{s}}/\rho _{\mathrm{m},\infty }-1\right) x^{3} }{{\nu _{\mathrm{m},\infty }}^{2}}\right) ^{1/2}x^{-1} \nonumber \\&\qquad \;\cdot (t_{\text{ s},\text{ int }}-t_{\infty } )\frac{\mathrm{d}\theta _\mathrm{m}}{\mathrm{d}\eta _\mathrm{m}}x^{-1}-D_\mathrm{v}(c_{{p}_\mathrm{v}}-c_{{p}_\mathrm{g}} )\nonumber \\&\qquad \;\times \left[ \rho _{\mathrm{v},\mathrm{m}} \frac{\mathrm{d}C_{\text{ mv }} }{\mathrm{d}\eta _\mathrm{v}}\left( \frac{1}{4}\frac{g\left( \rho _{\text{ m}, \mathrm{s}}/\rho _{\mathrm{m},\infty } -1\right) x^{3}}{{\nu _{\mathrm{m},\infty }}^{2}}\right) ^{1/2}x^{-1}(t_{\text{ s},\text{ int }}-t_{\infty } )\frac{\mathrm{d}\theta _\mathrm{m}}{\mathrm{d}\eta _\mathrm{m}}x^{-1}\right. \\&\qquad \qquad \;+\,t\rho _\mathrm{m}\frac{\mathrm{d}^{2}C_{\text{ mv }} }{{\mathrm{d}\eta _\mathrm{m}}^{2}}\left( \frac{1}{4}\frac{g\left( \rho _{\text{ m}, \mathrm{s}} /\rho _{\mathrm{m},\infty } -1\right) x^{3}}{{\nu _{\mathrm{m},\infty }}^{2}}\right) ^{1/2}x^{-2}\\&\qquad \qquad \left. \;+t\frac{\mathrm{d}C_{\text{ mv }}}{\mathrm{d}\eta _\mathrm{v}}\left( \frac{1}{4}\frac{g\left( \rho _{\text{ m}, \mathrm{s}}/\rho _{\mathrm{m},\infty }-1\right) x^{3}}{{\nu _{\mathrm{m},\infty }}^{2}}\right) ^{1/2}x^{-1}\frac{\mathrm{d}\rho _\mathrm{m} }{\mathrm{d}\eta _\mathrm{m} }x^{-1}\right] \end{aligned}$$

The above equation is divided by \(\sqrt{\frac{g}{x}} (\rho _{\text{ m}, \mathrm{s}} /\rho _{\mathrm{m},\infty }-1)^{1/2}\), and simplified to

$$\begin{aligned}&\rho _\mathrm{m}c_{{p}_\mathrm{m}}\left[ -2W_{x\mathrm{v}} (t_{\text{ s},\text{ int }} -t_{\infty })\frac{\mathrm{d}\theta _\mathrm{m}}{\mathrm{d}\eta _\mathrm{m}}\left( \frac{1}{4}\right) \eta _\mathrm{m}+2W_{y\mathrm{m}}(t_{\text{ s},\text{ int }}-t_{\infty } )\frac{\mathrm{d}\theta _\mathrm{m}}{\mathrm{d}\eta _\mathrm{m}}\right] \\&=\lambda _\mathrm{m}(t_{\text{ s},\text{ int }}-t_{\infty })\frac{\mathrm{d}^{2}\theta _\mathrm{m}}{{\mathrm{d}\eta _\mathrm{m}} ^{2}}\left( \frac{1}{4}\frac{1}{{\nu _{\mathrm{m},\infty }}^{2}}\right) ^{1/2}+\frac{\mathrm{d}\lambda _\mathrm{m}}{\mathrm{d}\eta _\mathrm{m}}\left( \frac{1}{4}\frac{1}{{\nu _{\mathrm{m},\infty }}^{2}}\right) ^{1/2} \\&\qquad \cdot (t_{\text{ s},\text{ int }} -t_{\infty })\frac{\mathrm{d}\theta _\mathrm{m} }{\mathrm{d}\eta _\mathrm{m}}-D_\mathrm{v}(c_{{p}_\mathrm{v}}-c_{{p}_\mathrm{g}}) \\&\qquad \;\times \left[ \rho _\mathrm{m} \frac{\mathrm{d}C_{\text{ mv }} }{\mathrm{d}\eta _\mathrm{m} }\left( \frac{1}{4}\frac{1}{{\nu _{\mathrm{m},\infty }}^{2}}\right) ^{1/2}(t_{\text{ s},\text{ int }} -t_{\infty } )\frac{\mathrm{d}\theta _\mathrm{m} }{\mathrm{d}\eta _\mathrm{m} }+t\rho _\mathrm{m} \frac{\mathrm{d}^{2}C_{\text{ mv }} }{{\mathrm{d}\eta _\mathrm{m} }^{2}}\left( \frac{1}{4}\frac{1}{{\nu _{\mathrm{m},\infty }}^{2}}\right) ^{1/2}\right. \\&\qquad \qquad \left. \;+t\frac{\mathrm{d}C_{\text{ v},\mathrm{w}} }{\mathrm{d}\eta _\mathrm{m} }\left( \frac{1}{4}\frac{1}{{\nu _{\mathrm{m},\infty }}^{2}}\right) ^{1/2}\frac{\mathrm{d}\rho _\mathrm{m} }{\mathrm{d}\eta _\mathrm{m} }\right] \end{aligned}$$

The above equation is multiplied by \(2\frac{\nu _{\mathrm{m},\infty }}{\lambda _\mathrm{m}(t_{\text{ s},\text{ int }} -t_{\infty })}\), and simplified to

$$\begin{aligned}&\frac{\nu _{\mathrm{m},\infty } \rho _{\text{ mv }} \mu _\mathrm{m} Cp_\mathrm{m} }{\lambda _\mathrm{m} \mu _\mathrm{m}}\left[ -\eta _\mathrm{m} W_{x\mathrm{m}} +4W_{y\mathrm{m}} \right] \frac{\mathrm{d}\theta _\mathrm{m} }{\mathrm{d}\eta _\mathrm{m}} \\&=\frac{\mathrm{d}^{2}\theta _\mathrm{m} }{{\mathrm{d}\eta _\mathrm{m}}^{2}}+\frac{1}{\lambda _\mathrm{m} }\frac{\mathrm{d}\lambda _\mathrm{m}}{\mathrm{d}\eta _\mathrm{m} }\frac{\mathrm{d}\theta _\mathrm{m} }{\mathrm{d}\eta _\mathrm{m} }-\frac{D_\mathrm{v} \rho _\mathrm{m} }{\lambda _\mathrm{m} }(c_{{p}_\mathrm{v}}-c_{{p}_\mathrm{g}}) \\&\quad \;\times \left[ \frac{\mathrm{d}C_{\text{ mv }} }{\mathrm{d}\eta _\mathrm{m} }\frac{\mathrm{d}\theta _\mathrm{m} }{\mathrm{d}\eta _\mathrm{m}}+\frac{t}{t_{\text{ s},\text{ int }} -t_{\infty } }\frac{\mathrm{d}^{2}C_{\text{ mv }} }{{\mathrm{d}\eta _\mathrm{m}}^{2}}+\frac{1}{\rho _\mathrm{m} }\frac{\mathrm{d}\rho _\mathrm{m} }{\mathrm{d}\eta _\mathrm{m}}\frac{t}{t_{\text{ s},\text{ int }} -t_{\infty } }\frac{\mathrm{d}C_{\text{ mv }} }{\mathrm{d}\eta _\mathrm{m} }\right] \end{aligned}$$

The above equation is changed to

$$\begin{aligned}&\frac{\nu _{\mathrm{m},\infty } \rho _\mathrm{m} \mu _\mathrm{m}c_{{p}_\mathrm{m}}}{\lambda _\mathrm{m} \mu _\mathrm{m} }[-\eta _\mathrm{v} W_{x\mathrm{m}} +4W_{y\mathrm{m}} ]\frac{\mathrm{d}\theta _\mathrm{m} }{\mathrm{d}\eta _\mathrm{m} } \nonumber \\&=\frac{\mathrm{d}^{2}\theta _\mathrm{m} }{{\mathrm{d}\eta _\mathrm{m}}^{2}}+\frac{1}{\lambda _\mathrm{m} }\frac{\mathrm{d}\lambda _\mathrm{m} }{\mathrm{d}\eta _\mathrm{m} }\frac{\mathrm{d}\theta _\mathrm{m} }{\mathrm{d}\eta _\mathrm{m} }-\frac{D_\mathrm{v} \rho _\mathrm{m} }{\lambda _\mathrm{m} }(c_{{p}_\mathrm{v}-c_{{p}_\mathrm{g}}})\nonumber \\&\quad \;\times \left[ \frac{\mathrm{d}C_{\text{ mv }} }{\mathrm{d}\eta _\mathrm{m} }\frac{\mathrm{d}\theta _\mathrm{m} }{\mathrm{d}\eta _\mathrm{m} }+\left( \theta _\mathrm{m} +\frac{t_{\infty } }{t_{\text{ s},\text{ int }}-t_{\infty } }\right) \frac{\mathrm{d}^{2}C_{\text{ mv }} }{\mathrm{d}\eta _{\infty } ^{2}}\right. \nonumber \\&\quad \qquad \left. \;+\frac{1}{\rho _\mathrm{m} }\frac{\mathrm{d}\rho _\mathrm{m} }{\mathrm{d}\eta _\mathrm{m} }\left( \theta _\mathrm{v} +\frac{t_{\infty } }{t_{\text{ s},\text{ int }}-t_{\infty }}\right) \frac{\mathrm{d}C_{\text{ mv }} }{\mathrm{d}\eta _\mathrm{m} }\right] \end{aligned}$$
(A34)

With (18.27) we have

$$\begin{aligned} \frac{\mathrm{d}C_{\text{ mv }} }{\mathrm{d}\eta _\mathrm{v} }=(C_{\text{ mv},\mathrm{s}} -C_{\mathrm{m}\mathrm{v},\infty } )\frac{\mathrm{d}\Gamma _{\text{ mv }}}{\mathrm{d}\eta _\mathrm{v}} \end{aligned}$$
(A35)
$$\begin{aligned} \frac{\mathrm{d}^{2}C_{\text{ mv }}}{\mathrm{d}\eta _\mathrm{v}^{2}}=(C_{\text{ mv},\mathrm{s}} -C_{\mathrm{m}\mathrm{v},\infty } )\frac{\mathrm{d}^{2}\Gamma _{\text{ mv }}}{\mathrm{d}\eta _\mathrm{v}^{2}} \end{aligned}$$
(A36)

Then, Eq. (A34) becomes

$$\begin{aligned}&\frac{\nu _{\mathrm{m},\infty }\Pr _\mathrm{m} }{\nu _\mathrm{m} }[-\eta _\mathrm{m}W_{x\mathrm{m}} +4W_{y\mathrm{m}} ]\frac{\mathrm{d}\theta _\mathrm{m} }{\mathrm{d}\eta _\mathrm{m} } \\&=\frac{\mathrm{d}^{2}\theta _\mathrm{m} }{{\mathrm{d}\eta _\mathrm{m}}^{2}}+\frac{1}{\lambda _\mathrm{m} }\frac{\mathrm{d}\lambda _\mathrm{m}}{\mathrm{d}\eta _\mathrm{m} }\frac{\mathrm{d}\theta _\mathrm{m} }{\mathrm{d}\eta _\mathrm{m} } -\frac{D_\mathrm{v}\rho _\mathrm{m}}{\lambda _\mathrm{m}}(C_{\text{ mv},\mathrm{s}} -C_{\mathrm{m}\mathrm{v},\infty } )(c_{{p}_\mathrm{v}}-c_{{p}_\mathrm{g}})\\&\quad \;\times \left[ \frac{\mathrm{d}\Gamma _{\text{ mv }} }{\mathrm{d}\eta _\mathrm{m}}\frac{\mathrm{d}\theta _\mathrm{m} }{\mathrm{d}\eta _\mathrm{m}}+\left( \theta _\mathrm{m} +\frac{t_{\infty }}{t_{\text{ s},\text{ int }}-t_{\infty }}\right) \frac{\mathrm{d}^{2}\Gamma _{\text{ mv }} }{{\mathrm{d}\eta _\mathrm{m}}^{2}}\right. \end{aligned}$$
$$\begin{aligned} \qquad \qquad \;\left. +\frac{1}{\rho _\mathrm{m} }\frac{\mathrm{d}\rho _\mathrm{m}}{\mathrm{d}\eta _\mathrm{m} }\left( \theta _\mathrm{m} +\frac{t_{\infty }}{t_{\text{ s},\text{ int }}-t_{\infty }}\right) \frac{\mathrm{d}\Gamma _{\text{ mv }}}{\mathrm{d}\eta _\mathrm{m}}\right] \end{aligned}$$
(18.33)

 

1.2.4 Similarity Transformation of Eq. (18.7)

The left-hand side of Eq. (18.7) is

$$\begin{aligned}&\frac{\partial (w_{x\mathrm{m}}\rho _\mathrm{m}C_{\text{ mv }})}{\partial x}+\frac{\partial (w_{y\mathrm{m}} \rho _\mathrm{m} C_{\text{ mv }} )}{\partial y} \\&=w_{x\mathrm{m}}\left[ \frac{\partial (\rho _\mathrm{m}C_{\text{ mv }} )}{\partial x}\right] +\rho _\mathrm{m}C_{\text{ mv }} \frac{\partial w_{x\mathrm{m}} }{\partial x}+w_{y\mathrm{m}}\left[ \frac{\partial (\rho _\mathrm{m}C_{\text{ mv }} )}{\partial y}\right] +\rho _\mathrm{m} C_{\text{ mv }} \frac{\partial w_{y\mathrm{m}} }{\partial y} \\&=w_{x\mathrm{m}} \rho _\mathrm{m} \frac{\partial (C_{\text{ mv }})}{\partial x}+w_{x\mathrm{m}}C_{\text{ mv }} \frac{\partial \rho _\mathrm{m}}{\partial x}+\rho _\mathrm{m} C_{\text{ mv }} \frac{\partial w_{x\mathrm{m}} }{\partial x}\\&\quad \;+w_{y\mathrm{m}} \rho _\mathrm{m} \frac{\partial (C_{\text{ mv }} )}{\partial y}+w_{y\mathrm{m}} C_{\text{ mv }} \frac{\partial \rho _\mathrm{m}}{\partial y}+\rho _\mathrm{m} C_{\text{ mv }} \frac{\partial w_{y\mathrm{m}}}{\partial y} \\&=w_{x\mathrm{m}}\rho _\mathrm{m}\frac{\partial (C_{\text{ mv }})}{\partial x}+w_{y\mathrm{m}} \rho _\mathrm{m} \frac{\partial (C_{\text{ mv }})}{\partial y}\\&\quad \;+C_{\mathrm{m},\mathrm{v}}\left( w_{x\mathrm{m}} \frac{\partial \rho _\mathrm{m} }{\partial x}+\rho _\mathrm{m}\frac{\partial w_{x\mathrm{m}} }{\partial x}+w_{y\mathrm{m}} \frac{\partial \rho _\mathrm{m}}{\partial y}+\rho _\mathrm{m}\frac{\partial w_{y\mathrm{m}} }{\partial y}\right) \end{aligned}$$

With Eq. (18.4) (the continuity equation of vapor–gas mixture film), the above equation is changed to

$$\begin{aligned} \frac{\partial (w_{x\mathrm{m}}\rho _\mathrm{m}C_{\text{ mv }})}{\partial x} + \frac{\partial (w_{y\mathrm{m}} \rho _\mathrm{m}C_{\text{ mv }})}{\partial y}=w_{x\mathrm{m}}\rho _\mathrm{m}\frac{\partial (C_{\text{ mv }} )}{\partial x}+w_{y\mathrm{m}}\rho _\mathrm{m}\frac{\partial (C_{\text{ mv }})}{\partial y} \end{aligned}$$
(A37)

Then, Eq. (18.7) becomes

$$\begin{aligned} w_{x\mathrm{m}} \frac{\partial C_{\text{ mv }} }{\partial x}+w_{y\mathrm{m}} \frac{\partial C_{\text{ mv }} }{\partial y}=D_\mathrm{v} \left( \frac{\partial ^2C_{\text{ mv }} }{\partial y^2}+\frac{1}{\rho _\mathrm{m} }\frac{\partial \rho _\mathrm{m} }{\partial y}\frac{\partial C_{\text{ mv }} }{\partial y}\right) \end{aligned}$$
(A38)

where \(D_\mathrm{v} \) is regarded as constant variable.

With Eq. (18.22) we have

$$\begin{aligned} \frac{\partial C_{\text{ mv }}}{\partial x}=\frac{\mathrm{d}C_{\text{ mv }}}{\mathrm{d}\eta _\mathrm{m}}\frac{\partial \eta _\mathrm{m}}{\partial x}=-\frac{1}{4}\eta _\mathrm{m} x^{-1}\frac{\mathrm{d}C_{\text{ mv }}}{\mathrm{d}\eta _\mathrm{m}} \end{aligned}$$
(A39)
$$\begin{aligned} \frac{\partial C_{\text{ mv }}}{\partial x}=\frac{\mathrm{d}C_{\text{ mv }}}{\mathrm{d}\eta _\mathrm{m}}\frac{\partial \eta _\mathrm{m}}{\partial x}=\frac{\mathrm{d}C_{\text{ mv }}}{\mathrm{d}\eta _\mathrm{m}}\left( \frac{1}{4}{\text{ Gr }}_{x\mathrm{m},\infty }\right) ^{1/4}x^{-1} \end{aligned}$$
(A40)
$$\begin{aligned} \frac{\partial ^{2}C_{\text{ mv }} }{\partial y^2}&=\frac{\partial }{\partial y}\left( \frac{\partial C_{\text{ mv }} }{\partial y}\right) \end{aligned}$$
$$\begin{aligned} =\frac{\mathrm{d}^{2}C_{\text{ mv }} }{{\mathrm{d}\eta _\mathrm{m}}^{2}}\left( \frac{1}{4}{\text{ Gr }}_{x\mathrm{m},\infty }\right) ^{1/2}x^{-2} \end{aligned}$$
(A41)

With Eqs. (A31), (A39)–(A41), Eq. (A38) is changed to

$$\begin{aligned}&-2\sqrt{gx} (\rho _{\text{ m}, \mathrm{s}} /\rho _{\mathrm{m},\infty }-1)^{1/2}W_{x\mathrm{m}} \frac{1}{4}\eta _\mathrm{m} x^{-1}\frac{\mathrm{d}C_{\text{ mv }} }{\mathrm{d}\eta _\mathrm{m} } +2\sqrt{gx} (\rho _{\text{ m}, \mathrm{s}} /\rho _{\mathrm{m},\infty } -1)^{1/2}\\&\times \left( \frac{1}{4}{\text{ Gr }}_{x\mathrm{m},\infty }\right) ^{-1/4} W_{y\mathrm{m}} \frac{\mathrm{d}C_{\text{ mv }} }{\mathrm{d}\eta _\mathrm{m} }\left( \frac{1}{4}{\text{ Gr }}_{x\mathrm{m},\infty }\right) ^{1/4}x^{-1} \\&\qquad =D_{\text{ v},\mathrm{w}} \left[ \frac{\mathrm{d}^{2}C_{\text{ mv }}}{{\mathrm{d}\eta _\mathrm{m}}^2}\left( \frac{1}{4}{\text{ Gr }}_{x\mathrm{m},\infty } \right) ^{1/2}x^{-2}+\frac{1}{\rho _\mathrm{m} }\frac{\mathrm{d}\rho _\mathrm{m} }{\mathrm{d}\eta _\mathrm{m} }\left( \frac{1}{4}{\text{ Gr }}_{x\mathrm{m},\infty }\right) ^{1/4}x^{-1}\right. \\&\qquad \quad \qquad \;\times \left. \frac{\mathrm{d}C_{\text{ mv }}}{\mathrm{d}\eta _\mathrm{m} }\left( \frac{1}{4}{\text{ Gr }}_{x\mathrm{m},\infty }\right) ^{1/4}x^{-1}\right] \end{aligned}$$

With the definition of \({\text{ Gr }}_{x\mathrm{m},\infty }\), the above equation is further changed to

$$\begin{aligned}&-2\sqrt{gx} (\rho _{\text{ m}, \mathrm{s}} /\rho _{\mathrm{m},\infty }-1)^{1/2}W_{x\mathrm{m}} \frac{1}{4}\eta _\mathrm{m}x^{-1}\frac{\mathrm{d}C_{\text{ mv }} }{\mathrm{d}\eta _\mathrm{m}} \\&\quad \;+2\sqrt{gx} (\rho _{\text{ m}, \mathrm{s}} /\rho _{\mathrm{m},\infty }-1)^{1/2}W_{y\mathrm{m}} \frac{\mathrm{d}C_{\text{ mv }} }{\mathrm{d}\eta _\mathrm{m}}x^{-1} \\&=D_\mathrm{v}\left[ \frac{\mathrm{d}^{2}C_{\text{ mv }}}{{\mathrm{d}\eta _\mathrm{m}}^{2}}\left( \frac{1}{4}\frac{g\left( \rho _{\text{ m}, \mathrm{s}} /\rho _{\mathrm{m},\infty }-1\right) x^{3}}{{\nu _{\mathrm{m},\infty }}^{2}}\right) ^{1/2}x^{-2}\right. \\&\left. \qquad \qquad \;+\frac{1}{\rho _\mathrm{m} }\frac{\mathrm{d}\rho _\mathrm{m}}{\mathrm{d}\eta _\mathrm{m}}x^{-1}\frac{\mathrm{d}C_{\text{ mv }} }{\mathrm{d}\eta _\mathrm{m} }\left( \frac{1}{4}\frac{g\left( \rho _{\text{ m}, \mathrm{s}} /\rho _{\mathrm{m},\infty }-1\right) x^{3} }{{\nu _{\mathrm{m},\infty }}^{2}}\right) ^{1/2}x^{-1}\right] \end{aligned}$$

The above equation is divided by \(\sqrt{\frac{g}{x}} (\rho _{\text{ m}, \mathrm{s}} /\rho _{\mathrm{m},\infty } -1)^{1/2}\), and simplified to

$$\begin{aligned}&\;-2W_{x\mathrm{m}}\frac{1}{4}\eta _\mathrm{m} \frac{\mathrm{d}C_{\text{ mv }} }{\mathrm{d}\eta _\mathrm{m} }+2W_{y\mathrm{m}} \frac{\mathrm{d}C_{\text{ mv }} }{\mathrm{d}\eta _\mathrm{m} }\\&\quad {}=D_\mathrm{v}\left[ \frac{\mathrm{d}^{2}C_{\text{ mv }} }{{\mathrm{d}\eta _\mathrm{m}}^{2}}\left( \frac{1}{4}\frac{1}{{\nu _{\mathrm{m},\infty }}^{2}}\right) ^{1/2}+\frac{1}{\rho _\mathrm{m}}\frac{\mathrm{d}\rho _\mathrm{m}}{\mathrm{d}\eta _\mathrm{m} }\left( \frac{1}{4}\frac{1}{{\nu _{\mathrm{m},\infty }}^{2}}\right) ^{1/2}\frac{\mathrm{d}C_{\text{ mv }}}{\mathrm{d}\eta _\mathrm{m}}\right] \end{aligned}$$

The above equation is multiplied by \(\frac{2\nu _{\mathrm{m},\infty }}{D_\mathrm{v}}\), and further simplified to

$$\begin{aligned} \frac{\nu _{\mathrm{m},\infty } }{D_\mathrm{v} }(-W_{x\mathrm{m}} \eta _\mathrm{m} +4W_{y\mathrm{m}} )\frac{\mathrm{d}C_{\text{ mv }} }{\mathrm{d}\eta _\mathrm{m} }=\frac{\mathrm{d}^{2}C_{\text{ mv }} }{{\mathrm{d}\eta _\mathrm{m}}^{2}}+\frac{1}{\rho _\mathrm{m} }\frac{\mathrm{d}\rho _\mathrm{m} }{\mathrm{d}\eta _\mathrm{m} }\frac{\mathrm{d}C_{\text{ mv }} }{\mathrm{d}\eta _\mathrm{m} } \end{aligned}$$
(A42)

With Eqs. (A35) and (A36), Eq. (A42) becomes

$$\begin{aligned} (-\eta _\mathrm{m}W_{x\mathrm{m}}+4W_{y\mathrm{m}})\frac{\mathrm{d}\Gamma _{\text{ mv }}}{\mathrm{d}\eta _\mathrm{m}}=\frac{1}{{\text{ Sc }}_{\mathrm{m},\infty }}\left( \frac{\mathrm{d}^{2}\Gamma _{\text{ mv }}}{{\mathrm{d}\eta _\mathrm{m}}^{2}}+\frac{1}{\rho _\mathrm{m}}\frac{\mathrm{d}\rho _\mathrm{m}}{\mathrm{d}\eta _\mathrm{m}}\frac{\mathrm{d}\Gamma _{\text{ mv }}}{\mathrm{d}\eta _\mathrm{m}}\right) \end{aligned}$$
(18.34)

where the local Schmidt number\({\text{ Sc }}_{\mathrm{m},\infty }\) is defined as

$$\begin{aligned} {\text{ Sc }}_{\mathrm{m},\infty }=\frac{\nu _{\mathrm{m},\infty } }{D_\mathrm{v} } \end{aligned}$$
(A43)

1.3 For Boundary Condition Equations

1.3.1 Similarity Transformation of Eq. (18.8)

With Eqs. (18.20) and (18.21), Eq. (18.8) can be easily transformed into the following dimensionless form:

$$\begin{aligned} \eta _\mathrm{l} =0{:} \quad W_{x\mathrm{l}}=0, \quad W_{y\mathrm{l}}=0, \quad \theta _{1}=1 \end{aligned}$$
(18.35)

1.3.2 Similarity Transformation of Eq. (18.9)

With Eqs. (8.20) and (18.25), Eq. (18.9) is easily transformed as

$$\begin{aligned} W_{x\mathrm{m},\mathrm{s}} =\left( \frac{\rho _{\mathrm{l},\mathrm{w}} -\rho _{\mathrm{m},\infty } }{\rho _{\text{ l},\mathrm{s}} }\right) ^{1/2} (\rho _{\text{ m}, \mathrm{s}} /\rho _{\mathrm{m},\infty }-1)^{-1/2}W_{x{\text{ l},\mathrm{s}}} \end{aligned}$$
(18.36)

1.3.3 Similarity Transformation of Eq. (18.10)

With Eqs. (18.17) and (18.18) we have

$$\begin{aligned} \delta _\mathrm{l}=\eta _{\mathrm{l}\delta }\left( \frac{1}{4}\frac{g\left( \rho _{\mathrm{l},\mathrm{w}}-\rho _{\mathrm{m},\infty }\right) x^{3}}{{\nu _{\text{ l},\mathrm{s}}}^{2}\rho _{\text{ l},\mathrm{s}}}\right) ^{1/4}x \end{aligned}$$

Then,

$$\begin{aligned} \left( \frac{\partial \delta _\mathrm{l}}{\partial x}\right) =\frac{1}{4}\eta _{\mathrm{l}\delta } \left( \frac{1}{4}{\text{ Gr }}_{x{\text{ l},\mathrm{s}}}\right) ^{-1/4} \end{aligned}$$
(A44)

Similarly,

$$\begin{aligned} \left( \frac{\partial \delta _\mathrm{m}}{\partial x}\right) =\frac{1}{4}\eta _{\mathrm{m}\delta } \left( \frac{1}{4}{\text{ Gr }}_{x\mathrm{m},\infty }\right) ^{-1/4} \end{aligned}$$
(A45)

With Eqs. (18.20), (18.21), (18.25), (18.26), (A44), and (A45), Eq. (18.10) is changed to

$$\begin{aligned}&\rho _{\text{ l},\mathrm{s}}\left[ 2\sqrt{gx}\left( \frac{\rho _{\text{ l},\mathrm{m}}-\rho _{\mathrm{m},\infty }}{\rho _{\text{ l},\mathrm{s}}}\right) ^{1/2}W_{x{\text{ l},\mathrm{s}}} \frac{1}{4}\eta _{\mathrm{l}\delta }\left( \frac{1}{4}{\text{ Gr }}_{x{\text{ l},\mathrm{s}}} \right) ^{-1/4}\right. \\&\qquad \qquad \left. \,-2\sqrt{gx} \left( \frac{\rho _{\text{ l},\mathrm{m}}-\rho _{\mathrm{m},\infty }}{\rho _{\text{ l},\mathrm{s}} }\right) ^{1/2}\left( \frac{1}{4}{\text{ Gr }}_{x{\text{ l},\mathrm{s}}}\right) ^{-1/4}W_{ybad hbox}\right] \\&=\rho _{\text{ m}, \mathrm{s}} C_{\text{ mv},\mathrm{s}} \left[ 2\sqrt{gx} (\rho _{\text{ m}, \mathrm{s}} /\rho _{\mathrm{m},\infty } -1)^{1/2}W_{x\mathrm{m},\mathrm{s}} \frac{1}{4}\eta _{\mathrm{m}\delta } \left( \frac{1}{4}{\text{ Gr }}_{x\mathrm{m},\infty } \right) ^{-1/4} \right. \\*&\quad \qquad \qquad \qquad \left. \,-2\sqrt{gx} \left( \rho _{\text{ m}, \mathrm{s}} /\rho _{\mathrm{m},\infty } -1\right) ^{1/2}\left( \frac{1}{4}{\text{ Gr }}_{x\mathrm{m},\infty }\right) ^{-1/4} W_{y{\text{ m},\mathrm{s}}}\right] \end{aligned}$$

Since \(\eta _{\mathrm{m}\delta } = 0 \) at the liquid–vapor mixture interface, the above equation becomes

$$\begin{aligned}&\rho _{\text{ l},\mathrm{s}} \left[ 2\sqrt{gx} \left( \frac{\rho _{\text{ l},\mathrm{m}} -\rho _{\mathrm{m},\infty } }{\rho _{\text{ l},\mathrm{s}} }\right) ^{1/2}W_{x{\text{ l},\mathrm{s}}} \frac{1}{4}\eta _{\mathrm{l}\delta } \left( \frac{1}{4}{\text{ Gr }}_{x{\text{ l},\mathrm{s}}} \right) ^{-1/4} \right. \\&\qquad \qquad \left. \,-2\sqrt{gx} \left( \frac{\rho _{\text{ l},\mathrm{m}} -\rho _{\mathrm{m},\infty }}{\rho _{\text{ l},\mathrm{s}} }\right) ^{1/2}\left( \frac{1}{4}{\text{ Gr }}_{x{\text{ l},\mathrm{s}}} \right) ^{-1/4}W_{ybad hbox}\right] \\&=-2\rho _{\text{ m}, \mathrm{s}} C_{\mathrm{m},\text{ vs }} \sqrt{gx} (\rho _{\text{ m}, \mathrm{s}} /\rho _{\mathrm{m},\infty } -1)^{1/2}\left( \frac{1}{4}{\text{ Gr }}_{x\mathrm{m},\infty }\right) ^{-1/4} W_{y{\text{ m},\mathrm{s}}} \end{aligned}$$

With definitions of \({\text{ Gr }}_{x{\text{ l},\mathrm{s}}} \) and \({\text{ Gr }}_{x\mathrm{m},\infty }\), the above equation is changed to

$$\begin{aligned}&\rho _{\text{ l},\mathrm{s}} \left[ 2\sqrt{gx} \left( \frac{\rho _{\text{ l},\mathrm{m}}-\rho _{\mathrm{m},\infty }}{\rho _{\text{ l},\mathrm{s}}}\right) ^{1/2}W_{x{\text{ l},\mathrm{s}}} \frac{1}{4}\eta _{\mathrm{l}\delta }\left( \frac{1}{4}\frac{g(\rho _{\mathrm{l},\mathrm{w}} -\rho _{\mathrm{m},\infty })x^{3}}{{\nu _{\text{ l},\mathrm{s}}}^{2}\rho _{\text{ l},\mathrm{s}} }\right) ^{-1/4} \right. \\&\qquad \qquad \left. \,-2\sqrt{gx} \left( \frac{\rho _{\text{ l},\mathrm{m}}-\rho _{\mathrm{m},\infty }}{\rho _{\text{ l},\mathrm{s}} }\right) ^{1/2}\left( \frac{1}{4}\frac{g(\rho _{\mathrm{l},\mathrm{w}} -\rho _{\mathrm{m},\infty })x^{3} }{{\nu _{\text{ l},\mathrm{s}}}^{2}\rho _{\text{ l},\mathrm{s}}}\right) ^{-1/4}W_{ybad hbox}\right] \\&=-2\rho _{\text{ m}, \mathrm{s}} C_{\mathrm{m},\text{ vs }} \sqrt{gx} (\rho _{\text{ m}, \mathrm{s}}/\rho _{\mathrm{m},\infty } -1)^{1/2}\left( \frac{1}{4}\frac{g(\rho _{\text{ m}, \mathrm{s}}/\rho _{\mathrm{m},\infty }-1)x^{3}}{{\nu _{\mathrm{m},\infty }}^2}\right) ^{-1/4} W_{y\mathrm{m},\mathrm{s}} \end{aligned}$$

The above equation is further simplified to

$$\begin{aligned}&\rho _{\text{ l},\mathrm{s}} \left[ 2\sqrt{gx} \left( \frac{\rho _{\text{ l},\mathrm{m}} -\rho _{\mathrm{m},\infty } }{\rho _{\text{ l},\mathrm{s}} }\right) ^{1/4}W_{x{\text{ l},\mathrm{s}}} \frac{1}{4}\eta _{\mathrm{l}\delta } \left( \frac{1}{4}\frac{gx^{3} }{{\nu _{\text{ l},\mathrm{s}}}^{2}}\right) ^{-1/4}\right. \\&\qquad \qquad \left. \,-2\sqrt{gx} \left( \frac{\rho _{\text{ l},\mathrm{m}}-\rho _{\mathrm{m},\infty } }{\rho _{\text{ l},\mathrm{s}}}\right) ^{1/4}\left( \frac{1}{4}\frac{gx^{3}}{{\nu _{\text{ l},\mathrm{s}}} ^{2}}\right) ^{-1/4}W_{{\rm yl}, {\rm s}}\right] \\&=-2\rho _{\text{ m}, \mathrm{s}} C_{\mathrm{m},\text{ vs }} \sqrt{gx} \left( \rho _{\text{ m}, \mathrm{s}} /\rho _{\mathrm{m},\infty } -1\right) ^{1/4}\left( \frac{1}{4}\frac{gx^{3}}{{\nu _{\mathrm{m},\infty }}^{2}}\right) ^{-1/4} W_{y{\text{ m},\mathrm{s}}} \end{aligned}$$

The above equation is multiplied by \(x^{1/4}g^{-1/4}\), and simplified to

$$\begin{aligned}&\rho _{\text{ l},\mathrm{s}}\left[ 2\left( \frac{\rho _{\text{ l},\mathrm{m}}-\rho _{\mathrm{m},\infty }}{\rho _{\text{ l},\mathrm{s}} }\right) ^{1/4}W_{x{\text{ l},\mathrm{s}}} \frac{1}{4}\eta _{\mathrm{l}\delta }\left( \frac{1}{4}\frac{1}{{\nu _{\text{ l},\mathrm{s}}} ^{2}}\right) ^{-1/4} \right. \\&\qquad \qquad \left. \,-2\left( \frac{\rho _{\text{ l},\mathrm{m}} -\rho _{\mathrm{m},\infty }}{\rho _{\text{ l},\mathrm{s}} }\right) ^{1/4}\left( \frac{1}{4}\frac{1}{{\nu _{\text{ l},\mathrm{s}}}^{2}}\right) ^{-1/4}W_{\rm yl, s} \right] \\&=-2\rho _{\text{ m}, \mathrm{s}} C_{\mathrm{mv},\text{ s }} (\rho _{\text{ m}, \mathrm{s}} /\rho _{\mathrm{m},\infty } -1)^{1/4}\left( \frac{1}{4}\frac{1}{{\nu _{\mathrm{m},\infty }}^{2}}\right) ^{-1/4}W_{y{\text{ m},\mathrm{s}}} \end{aligned}$$

i.e.,

$$\begin{aligned}&\rho _{\text{ l},\mathrm{s}}\left[ \frac{1}{4}\left( \frac{\rho _{\text{ l},\mathrm{m}} -\rho _{\mathrm{m},\infty }}{\rho _{\text{ l},\mathrm{s}} }\right) ^{1/4}W_{x{\text{ l},\mathrm{s}}} \eta _{\mathrm{l}\delta } {\nu _{\text{ l},\mathrm{s}}}^{1/2}-\left( \frac{\rho _{\text{ l},\mathrm{m}} -\rho _{\mathrm{m},\infty }}{\rho _{\text{ l},\mathrm{s}}}\right) ^{1/4}{\nu _{\text{ l},\mathrm{s}}}^{1/2}W_{\rm yl, s}\right] \\&=-\rho _{\text{ m}, \mathrm{s}}C_{\mathrm{mv},\text{ s }} \left( \rho _{\text{ m}, \mathrm{s}} /\rho _{\mathrm{m},\infty }-1\right) ^{1/4}{\nu _{\mathrm{m},\infty }}^{1/2}W_{y{\text{ m},\mathrm{s}}} \end{aligned}$$

Then,

$$\begin{aligned} W_{y{\text{ m},\mathrm{s}}} =&{}-\frac{1}{C_{\text{ mv},\mathrm{s}} }\frac{\rho _{\text{ l},\mathrm{s}} }{\rho _{\text{ m}, \mathrm{s}} }\left( \frac{\nu _{\text{ l},\mathrm{s}} }{\nu _{\mathrm{m},\infty } }\right) ^{1/2}\left( \frac{\rho _{\text{ l},\mathrm{m}} -\rho _{\mathrm{m},\infty } }{\rho _{\text{ l},\mathrm{s}} }\right) ^{1/4} \end{aligned}$$
$$\begin{aligned} \times (\rho _{\text{ m}, \mathrm{s}} /\rho _{\mathrm{m},\infty } -1)^{-1/4}\left( \frac{1}{4}\eta _{\mathrm{l}\delta } W_{x{\text{ l},\mathrm{s}}} -W_{ybad hbox} \right) \end{aligned}$$
(18.37)

1.3.4 Similarity Transformation of Eq. (18.11)

With Eqs. (A8) and (A19), Eq. (18.11) is changed to

$$\begin{aligned}&\mu _{\text{ l},\mathrm{s}}2\sqrt{gx}\left( \frac{\rho _{\mathrm{l},\mathrm{w}}-\rho _{\mathrm{m},\infty }}{\rho _{\text{ l},\mathrm{s}}}\right) ^{1/2}\left( \frac{\mathrm{d}W_{x\mathrm{l}}}{\mathrm{d}\eta _\mathrm{l}}\right) _\mathrm{s}x^{-1}\left( \frac{1}{4}{\text{ Gr }}_{x{\text{ l},\mathrm{s}}}\right) ^{1/4}\\&=\mu _{\text{ m}, \mathrm{s}}2\sqrt{gx}(\rho _{\text{ m}, \mathrm{s}}/\rho _{\mathrm{m},\infty }-1)^{1/2}\left( \frac{\mathrm{d}W_{x\mathrm{m}}}{\mathrm{d}\eta _{\nu }}\right) _\mathrm{s}x^{-1}\left( \frac{1}{4}{\text{ Gr }}_{x\mathrm{m},\infty }\right) ^{1/4} \end{aligned}$$

With the definitions of \({\text{ Gr }}_{x{\text{ l},\mathrm{s}}}\) and \({\text{ Gr }}_{x\mathrm{m},\infty }\), the above equation becomes

$$\begin{aligned}&\mu _{\text{ l},\mathrm{s}}\left( \frac{\rho _{\mathrm{l},\mathrm{w}}-\rho _{\mathrm{m},\infty }}{\rho _{\text{ l},\mathrm{s}}}\right) ^{1/2}\left( \frac{\mathrm{d}W_{x\mathrm{l}}}{\mathrm{d}\eta _\mathrm{l}}\right) _\mathrm{s}x^{-1}\left( \frac{1}{4}\frac{g(\rho _{\mathrm{l},\mathrm{w}}-\rho _{\mathrm{m},\infty })x^{3}}{{\nu _{\text{ l},\mathrm{s}}}^{2}\rho _{\text{ l},\mathrm{s}}}\right) ^{1/4}\\&=\mu _{\text{ m}, \mathrm{s}}(\rho _{\text{ m}, \mathrm{s}}/\rho _{\mathrm{m},\infty }-1)^{1/2}\left( \frac{\mathrm{d}W_{x\mathrm{m}}}{\mathrm{d}\eta _\mathrm{m}}\right) _\mathrm{s}x^{-1}\left( \frac{1}{4}\frac{g(\rho _{\text{ m}, \mathrm{s}}/\rho _{\mathrm{m},\infty }-1)x^{3}}{{\nu _{\mathrm{m},\infty }}^{2}}\right) ^{1/4} \end{aligned}$$

Therefore,

$$\begin{aligned} \left( \frac{\mathrm{d}W_{x\mathrm{m}} }{\mathrm{d}\eta _\mathrm{m} }\right) _\mathrm{s}=\,&\frac{\mu _{\text{ l},\mathrm{s}} }{\mu _{\text{ m}, \mathrm{s}} }\left( \frac{\nu _{\mathrm{m},\infty } }{\nu _{\text{ l},\mathrm{s}} }\right) ^{1/2} \left( \frac{\rho _{\mathrm{l},\mathrm{w}} -\rho _{\mathrm{m},\infty } }{\rho _{\text{ l},\mathrm{s}} }\right) ^{3/4} \end{aligned}$$
$$\begin{aligned} \times (\rho _{\text{ m}, \mathrm{s}} /\rho _{\mathrm{m},\infty } -1)^{-3/4} \left( \frac{\mathrm{d}W_{x\mathrm{l}} }{\mathrm{d}\eta _\mathrm{l} }\right) _\mathrm{s} \end{aligned}$$
(18.38)

1.3.5 Similarity Transformation of Eq. (18.12)

With Eqs. (A13), (A25), (A28), (A45), and (18.26), Eq. (18.12) is changed to

$$\begin{aligned}&\lambda _{\text{ l},\mathrm{s}}(t_\mathrm{w}-t_{\text{ s},\text{ int }})\left( \frac{\mathrm{d}\theta _\mathrm{l}}{\mathrm{d}\eta _\mathrm{l}}\right) _\mathrm{s}\left( \frac{1}{4}{\text{ Gr }}_{x{\text{ l},\mathrm{s}}}\right) ^{1/4}x^{-1}\\[6pt]&=\lambda _{\text{ m}, \mathrm{s}}(t_{\text{ s},\text{ int }}-t_{\infty })\left( \frac{\mathrm{d}\theta _{\infty }}{\mathrm{d}\eta _{\infty }}\right) _\mathrm{s}\left( \frac{1}{4}{\text{ Gr }}_{x\mathrm{m},\infty }\right) ^{1/4}x^{-1}+h_\text{ fg } \rho _{\text{ m}, \mathrm{s}}C_{\text{ mv},\mathrm{s}}\\[6pt]&\qquad \qquad \left[ 2\sqrt{gx}(\rho _{\text{ m}, \mathrm{s}}/\rho _{\mathrm{m},\infty }-1)^{1/2}W_{x\mathrm{m}}\frac{1}{4}\eta _{\mathrm{m}\delta }\left( \frac{1}{4}{\text{ Gr }}_{x\mathrm{m},\mathrm{s}}\right) ^{-1/4}\right. \\[6pt]&\left. \qquad \qquad -2\sqrt{gx}(\rho _{\text{ m}, \mathrm{s}}/\rho _{\mathrm{m},\infty }-1)^{1/2}\left( \frac{1}{4}{\text{ Gr }}_{x\mathrm{m},\infty }\right) ^{-1/4}W_{y{\text{ m},\mathrm{s}}}\right] _\mathrm{s} \end{aligned}$$

With the definitions of \({\text{ Gr }}_{x{\text{ l},\mathrm{s}}} \) and \({\text{ Gr }}_{x\mathrm{m},\infty }\), the above equation is changed to

$$\begin{aligned}&\lambda _{\text{ l},\mathrm{s}}(t_\mathrm{w}-t_{\text{ s},\text{ int }})\left( \frac{\mathrm{d}\theta _\mathrm{l}}{\mathrm{d}\eta _\mathrm{l}}\right) _\mathrm{s}\left( \frac{1}{4}\frac{g(\rho _{\mathrm{l},\mathrm{w}}-\rho _{\mathrm{m},\infty })x^{3}}{{\nu _{\text{ l},\mathrm{s}}}^{2}\rho _{\text{ l},\mathrm{s}}}\right) ^{1/4}x^{-1}\\[6pt]&=\lambda _{{\rm v, \, ms}}(t_{\text{ s},\text{ int }}-t_{\infty })\left( \frac{\mathrm{d}\theta _\mathrm{m}}{\mathrm{d}\eta _\mathrm{m}}\right) _\mathrm{s}\left( \frac{1}{4}\frac{g(\rho _{\text{ m}, \mathrm{s}}/\rho _{\mathrm{m},\infty }-1)x^{3}}{{\nu _{\mathrm{m},\infty }}^{2}}\right) ^{1/4}x^{-1}+h_\text{ fg } \rho _{\text{ m}, \mathrm{s}}C_{\mathrm{mv},\text{ s }}\\[6pt]&\qquad \;\times \left[ 2\sqrt{gx}(\rho _{\text{ m}, \mathrm{s}}/\rho _{\mathrm{m},\infty }-1)^{1/2}W_{x\mathrm{m}}\frac{1}{4}\eta _{\mathrm{m}\delta }\left( \frac{1}{4}\frac{g(\rho _{\text{ m}, \mathrm{s}}/\rho _{\mathrm{m},\infty }-1)x^{3}}{{\nu _{\mathrm{m},\infty }}^{2}}\right) ^{1/4}\right. \\[6pt]&\left. \qquad \qquad -2\sqrt{gx}(\rho _{\text{ m}, \mathrm{s}}/\rho _{\mathrm{m},\infty }-1)^{1/2}\left( \frac{1}{4}\frac{g(\rho _{\text{ m}, \mathrm{s}}/\rho _{\mathrm{m},\infty }-1)x^{3}}{{\nu _{\mathrm{m},\infty }}^{2}}\right) ^{-1/4}W_{y\mathrm{m}}\right] _\mathrm{s} \end{aligned}$$

Since \(\eta _{\mathrm{m}\delta }= 0\) at the liquid–vapor mixture interface, the above equations becomes

$$\begin{aligned}&\lambda _{\text{ l},\mathrm{s}}(t_\mathrm{w}-t_{\text{ s},\text{ int }})\left( \frac{\mathrm{d}\theta _\mathrm{l}}{\mathrm{d}\eta _\mathrm{l}}\right) _\mathrm{s}\left( \frac{1}{4}\frac{g(\rho _{\mathrm{l},\mathrm{w}}-\rho _{\mathrm{m},\infty })x^{3}}{{\nu _{\text{ l},\mathrm{s}}}^{2}\rho _{\text{ l},\mathrm{s}}}\right) ^{1/4}x^{-1}\\[6pt]&=\lambda _{\text{ m}, \mathrm{s}}(t_{\text{ s},\text{ int }}-t_{\infty })\left( \frac{\mathrm{d}\theta _\mathrm{m}}{\mathrm{d}\eta _\mathrm{m}}\right) _\mathrm{s}\left( \frac{1}{4}\frac{g(\rho _{\text{ m}, \mathrm{s}}/\rho _{\mathrm{m},\infty }-1)x^{3}}{{\nu _{\mathrm{m},\infty }}^{2}}\right) ^{1/4}x^{-1}\\[6pt]&\;-2h_\text{ fg } \rho _{\text{ m}, \mathrm{s}}C_{\mathrm{m},\text{ vs }}\sqrt{gx}(\rho _{\text{ m}, \mathrm{s}}/\rho _{\mathrm{m},\infty }-1)^{1/2}\left( \frac{1}{4}\frac{g(\rho _{\text{ m}, \mathrm{s}}/\rho _{\mathrm{m},\infty }-1)x^{3}}{{\nu _{\mathrm{m},\infty }}^{2}}\right) ^{1/4}W_{y{\text{ m},\mathrm{s}}} \end{aligned}$$

The above equation is divided by \(\left( \frac{g}{4x}\right) ^{1/4}\), and simplified to

$$\begin{aligned}&\lambda _{\text{ l},\mathrm{s}}(t_\mathrm{w}-t_{\text{ s},\text{ int }})\left( \frac{\mathrm{d}\theta _\mathrm{l}}{\mathrm{d}\eta _\mathrm{l}}\right) _\mathrm{s}\left( \frac{\rho _{\mathrm{l},\mathrm{w}}-\rho _{\mathrm{m},\infty }}{{\nu _{\text{ l},\mathrm{s}}}^{2}\rho _{\text{ l},\mathrm{s}}}\right) ^{1/4}\\[6pt]&=\lambda _{\text{ m}, \mathrm{s}}(t_{\text{ s},\text{ int }}-t_{\infty })\left( \frac{\mathrm{d}\theta _\mathrm{m}}{\mathrm{d}\eta _\mathrm{m}}\right) _\mathrm{s}\left( \frac{\rho _{\text{ m}, \mathrm{s}}/\rho _{\mathrm{m},\infty }-1}{{\nu _{\mathrm{m},\infty }}^{2}}\right) ^{1/4}\\[6pt]&\qquad -4h_\text{ fg } \rho _{\text{ m}, \mathrm{s}}C_{\text{ mv},\mathrm{s}}(\rho _{\text{ m}, \mathrm{s}}/\rho _{\mathrm{m},\infty }-1)^{1/4}\left( \frac{1}{{\nu _{\mathrm{m},\infty }}^{2}}\right) ^{-1/4} W_{y{\text{ m},\mathrm{s}}} \end{aligned}$$

i.e.,

$$\begin{aligned}&\lambda _{bad hbox}(t_{\text{ s},\text{ int }}-t_{\infty })\left( \frac{\mathrm{d}\theta _\mathrm{m}}{\mathrm{d}\eta _\mathrm{m}}\right) _\mathrm{s}\left( \frac{\rho _{\text{ m}, \mathrm{s}}/\rho _{\mathrm{m},\infty }-1}{{\nu _{\mathrm{m},\infty }}^{2}}\right) ^{1/4}\\[6pt]&=\lambda _{\text{ l},\mathrm{s}}(t_\mathrm{w}-t_{\text{ s},\text{ int }})\left( \frac{\mathrm{d}\theta _\mathrm{l}}{\mathrm{d}\eta _\mathrm{l}}\right) _\mathrm{s}\left( \frac{\rho _{\mathrm{l},\mathrm{w}}-\rho _{\mathrm{m},\infty }}{{\nu _{\text{ l},\mathrm{s}}}^{2}\rho _{\text{ l},\mathrm{s}}}\right) ^{1/4}\\[6pt]&\qquad +4h_\text{ fg } \rho _{\text{ m}, \mathrm{s}}C_{\text{ vw},\mathrm{s}}(\rho _{\text{ m}, \mathrm{s}}/\rho _{\mathrm{m},\infty }-1)^{1/4}\left( \frac{1}{{\nu _{\mathrm{m},\infty }}^{2}}\right) ^{-1/4} W_{y{\text{ m},\mathrm{s}}} \end{aligned}$$

Therefore,

$$\begin{aligned}&\left( \frac{\mathrm{d}\theta _\mathrm{m} }{\mathrm{d}\eta _\mathrm{m}}\right) _\mathrm{s} \nonumber \\&=\frac{\lambda _{\text{ l},\mathrm{s}} (t_\mathrm{w} -t_{\text{ s},\text{ int }})\left( \frac{\nu _{\mathrm{m},\infty } }{\nu _{\text{ l},\mathrm{s}} }\right) ^{1/2}\left( \frac{\rho _{\mathrm{l},\mathrm{w}} -\rho _{\mathrm{m},\infty } }{\rho _{\text{ l},\mathrm{s}} }\right) ^{1/4}(\rho _{\text{ m}, \mathrm{s}} /\rho _{\mathrm{m},\infty } -1)^{-1/4}\left( \frac{\mathrm{d}\theta _\mathrm{l}}{\mathrm{d}\eta _\mathrm{l}}\right) _\mathrm{s} +4h_\text{ fg } \rho _{\text{ m}, \mathrm{s}} C_{\text{ mv},\mathrm{s}} \nu _{\mathrm{m},\infty } W_{y{\text{ m},\mathrm{s}}} }{\lambda _{\text{ m}, \mathrm{s}} (t_{\text{ s},\text{ int }} -t_\infty )}\nonumber \\ \end{aligned}$$
(18.44)

1.3.6 Similarity Transformation of Eq. (18.13)

With Eqs. (18.19) and (18.24), Eq. (18.13) can easily be changed to

$$\begin{aligned} \theta _\mathrm{l}=0, \quad \theta _\mathrm{v} = 1 \end{aligned}$$
(18.40)

1.3.7 Similarity Transformation of Eq. (18.14)

With Eq. (18.27), Eq. (18.14) is easily transformed into

$$\begin{aligned} \Gamma _{\mathrm{mv}} =1 \end{aligned}$$
(18.41)

1.3.8 Similarity Transformation of Eq. (18.15)

With Eqs. (18.20), (18.21), (A40), and (A44), Eq. (18.15) is changed to

$$\begin{aligned}&\rho _{\text{ m}, \mathrm{s}}C_{\text{ mv},\mathrm{s}}\left( \frac{1}{4}{\text{ Gr }}_{x\mathrm{m},\infty }\right) ^{1/2}\cdot 2\cdot x^{-1}\nu _{\mathrm{m},\infty }2\left( \frac{1}{4}{\text{ Gr }}_{x\mathrm{m},\infty }\right) ^{-1/4} \left( \!\frac{1}{4}\eta _{\mathrm{m}\delta }W_{x\mathrm{m},\mathrm{s}}-W_{y{\text{ m},\mathrm{s}}}\!\right) \\[6pt]&=D_\mathrm{v}\rho _{\text{ m}, \mathrm{s}} \left( \frac{\mathrm{d}C_{\text{ mv }}}{\mathrm{d}\eta _\mathrm{m}}\right) _\mathrm{s}\left( \frac{1}{4}{\text{ Gr }}_{x\mathrm{m},\infty }\right) ^{1/4}x^{-1} \end{aligned}$$

i.e.,

$$\begin{aligned} \rho _{\text{ m}, \mathrm{s}}C_{\text{ mv},\mathrm{s}}\nu _{\mathrm{m},\infty }(\eta _{\mathrm{m}\delta }W_{x\mathrm{m},\mathrm{s}}-4W_{y{\text{ m},\mathrm{s}}} )=D_\mathrm{v}\rho _{\text{ m}, \mathrm{s}}\left( \frac{\mathrm{d}C_{\text{ mv }}}{\mathrm{d}\eta _\mathrm{m}}\right) _\mathrm{s}\end{aligned}$$

Since \(\eta _{\mathrm{m}\delta } = 0 \) at the liquid–vapor mixture interface, we have

$$\begin{aligned} \left( \frac{\mathrm{d}C_{\text{ mv }}}{\mathrm{d}\eta _\mathrm{m}}\right) _\mathrm{s}=-4\frac{C_{\text{ mv},\mathrm{s}} \nu _{\mathrm{m},\infty } }{D_\mathrm{v} }W_{y{\text{ m},\mathrm{s}}} \end{aligned}$$

With Eq. (18.27), the above equation becomes

$$\begin{aligned} \left( \frac{\mathrm{d}\Gamma _{\text{ mv }}}{\mathrm{d}\eta _\mathrm{m}}\right) _\mathrm{s}=-4\frac{C_{\text{ mv},\mathrm{s}}}{(C_{\text{ mv},\mathrm{s}} -C_{\mathrm{m\nu},\infty })}\frac{\nu _{\mathrm{m},\infty }}{D_\mathrm{v}}W_{y{\text{ m},\mathrm{s}}} \end{aligned}$$
(18.42)

1.3.9 Similarity Transformation of Eq. (18.16)

At \(y\rightarrow \infty \), with Eqs. (18.24), (18.25), and (18.27), Eq. (18.16) is easily transformed into

$$\begin{aligned} \eta _\mathrm{m} \rightarrow \infty : \quad W_{x\mathrm{m}} =0, \quad \theta _\mathrm{m} =0, \quad \Gamma _{\mathrm{m}\mathrm{v},\infty } =0 \end{aligned}$$
(18.43)

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shang, DY. (2012). Complete Similarity Mathematical Models on Laminar Free Convection Film Condensation from Vapor–Gas Mixture. In: Free Convection Film Flows and Heat Transfer. Heat and Mass Transfer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28983-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28983-5_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28982-8

  • Online ISBN: 978-3-642-28983-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics