Spironolactone-Loaded Liposomes Produced Using a Membrane Contactor Method: An Improvement of the Ethanol Injection Technique

  • A. Laouini
  • C. Jaafar-Maalej
  • S. Gandoura-Sfar
  • C. CharcossetEmail author
  • H. Fessi
Conference paper
Part of the Progress in Colloid and Polymer Science book series (PROGCOLLOID, volume 139)


Spironolactone, a hydrophobic drug, has been encapsulated within liposomes using two different preparation methods: the ethanol injection technique and the membrane contactor. The effects of the technique on the prepared liposomes characteristics have been investigated. For this aim, the spironolactone-loaded liposomes were characterized in terms of size, zeta potential, microscopic morphology, encapsulation efficiency and in vitro release profile. Results indicated a significant influence of the applied preparation method. Indeed, when the membrane contactor method was used, the mean size was smaller (123 nm instead of 200 nm), the encapsulation efficiency was higher (93% instead of 80%), and the release profile showed a better dissolution behaviour which may enhance the preparation availability. In conclusion, these results confirmed that the membrane contactor presents an improvement of the ethanol injection technique allowing a continuous production of liposomes at large scale.


Zeta Potential Membrane Contactor Liposome Preparation Liposomal Suspension Tungstic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lian T, Ho RJ (2001) Trends and developments in liposome drug delivery systems. J Pharm Sci 90:667–680CrossRefGoogle Scholar
  2. 2.
    Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Drug Discov 4:145–160CrossRefGoogle Scholar
  3. 3.
    Bangham AD (1978) Properties and uses of lipid vesicles: an overview. Ann N Y Acad Sci 308:2–7CrossRefGoogle Scholar
  4. 4.
    Batzri S, Korn ED (1973) Single bilayer liposomes prepared without sonication. Biochim Biophys Acta 298:1015–1019CrossRefGoogle Scholar
  5. 5.
    Jahn A, Vreeland WN, Gaitan M, Locascio LE (2004) Controlled vesicle self-assembly in microfluidic channels with hydrodynamic focusing. J Am Chem Soc 126:2674–2675CrossRefGoogle Scholar
  6. 6.
    Pradhan P, Guan J, Lu D, Wang PG, Lee LG, Lee RJ (2008) A facile microfluidic method for production of liposomes. Anticancer Res 28:943–948Google Scholar
  7. 7.
    Vemuri S, Yu C, Wangsatorntanakun V, Venkatram S (1990) Large-scale production of liposomes by microfluidizer. Drug Dev Ind Pharm 16:2243–2256CrossRefGoogle Scholar
  8. 8.
    Wagner A, Platzgummer M, Kreismayr G (2006) GMP production of liposomes: a new industrial approach. J Lip Res 16:311–319CrossRefGoogle Scholar
  9. 9.
    Jaafar-Maalej C, Charcosset C, Fessi H (2011) A new method for liposome preparation using a membrane contactor. J Lip Res 21:213–220CrossRefGoogle Scholar
  10. 10.
    Kremer JMH, Vander Esker MW, Pathmamanoharan C, Wiessema PH (1977) Vesicles of variable diameter prepared by a modified injection method. Biochemistry 16:3932–3935CrossRefGoogle Scholar
  11. 11.
    Jaafar-Maalej C, Diab R, Andrieu V, Elaissari A, Fessi H (2010) Ethanol injection method for hydrophilic and lipophilic drug-loaded liposome preparation. J Lip Res 20:228–243CrossRefGoogle Scholar
  12. 12.
    Laouini A, Jaafar-Maalej C, Sfar S, Charcosset C, Fessi H (2011) Liposome preparation using a hollow fiber membrane contactor – application to spironolactone encapsulation. Int J Pharm 415:53–61CrossRefGoogle Scholar
  13. 13.
    Berger N, Sachse A, Bender J (2001) Filter extrusion of liposomes using different devices: comparison of liposome size, encapsulation efficiency, and process characteristics. Int J Pharm 223:55–68CrossRefGoogle Scholar
  14. 14.
    Kölchens S, Ramaswamia V, Birgenheiera J (1993) Quasi-elastic light scattering determination of the size distribution of extruded vesicles. Chem Phys Lipids 65:1–10CrossRefGoogle Scholar
  15. 15.
    Provder T (1997) Challenges in particle size distribution measurement past, present and for the 21st century. Prog Org Coat 32:143–153CrossRefGoogle Scholar
  16. 16.
    Wagner A, Vorauer-Uhlb K, Katingerb H (2002) Liposomes produced in a pilot scale: production, purification and efficiency aspects. Eur J Pharm Biopharm 54:213–219CrossRefGoogle Scholar
  17. 17.
    Liu D, Mori A, Huang L (1992) Role of liposome size and RES blockade in controlling biodistribution and tumor uptake of GM1-containing liposomes. Biochim Biophys Acta 1104:95–101CrossRefGoogle Scholar
  18. 18.
    Barratt G (2003) Colloidal drug carriers: achievements and perspectives. Cell Mol Life Sci 60:21–37CrossRefGoogle Scholar
  19. 19.
    Limayem-Blouza I, Charcosset C, Sfar S, Fessi H (2006) Preparation and characterization of spironolactone-loaded nanocapsules for paediatric use. Int J Pharm 325:124–131CrossRefGoogle Scholar
  20. 20.
    Fresta M, Cavallaro G, Giammona G, Wehrli E, Puglisi G (1996) Preparation and characterization of polyethyl-2-cyanoacrylate nanocapsules containing antiepileptic drugs. Biomaterials 17:751–758CrossRefGoogle Scholar
  21. 21.
    Xu Q, Tanaka Y, Czernuszka JT (2007) Encapsulation and release of a hydrophobic drug from hydroxyapatite coated liposomes. Biomaterials 28:2687–2694CrossRefGoogle Scholar
  22. 22.
    Simmonds J, Franklin O, Burch M (2006) Understanding the pathophysiology of paediatric heart failure and its treatment. Curr Paediatr 16:398–405CrossRefGoogle Scholar
  23. 23.
    Standing F, Tuleu C (2005) Pediatric formulations: getting to the heart of the problem. Int J Pharm 300:56–66CrossRefGoogle Scholar
  24. 24.
    Allen LV, Erickson MA (1996) Stability of ketonazole, metolazone, metronidazole, procainamide, hydrochloride and spironolactone in extemporaneously compounded oral liquids. Am J Health Syst Pharm 53:2073–2078Google Scholar
  25. 25.
    Barenholz Y (2003) Relevancy of drug loading to liposomal formulation therapeutic efficacy. Liposome Res 13:1–8CrossRefGoogle Scholar
  26. 26.
    Hunter R, Midmore HZ (2001) Zeta potential of highly charged thin double-layer systems. J Colloid Interf Sci 237:147–149CrossRefGoogle Scholar
  27. 27.
    Lyklema J, Fleer GJ (1987) Zeta electrical contributions to the effect of macromolecules on colloid stability. Colloid Surf 25:357–368CrossRefGoogle Scholar
  28. 28.
    Mosharraf M, Nystrom C (1995) The effect of particle size and shape on the surface specific dissolution rate of microsized practically insoluble drugs. Int J Pharm 122:35–47CrossRefGoogle Scholar
  29. 29.
    Wiacek A, Chibowski E (1999) Zeta potential, effective diameter and multimodal size distribution in oil/water emulsion. Colloid Surf A 159:253–261CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • A. Laouini
    • 1
    • 2
  • C. Jaafar-Maalej
    • 1
  • S. Gandoura-Sfar
    • 2
  • C. Charcosset
    • 1
    Email author
  • H. Fessi
    • 1
  1. 1.Laboratoire d’Automatique et de Génie des Procédés (LAGEP), UMR 5007, CNRSUniversité Claude Bernard Lyon 1Villeurbanne CedexFrance
  2. 2.Laboratoire de Pharmacie Galénique, Faculté de pharmacieMonastirTunisie

Personalised recommendations