Skip to main content

Control over the Shell Thickness of Core/Shell Drops in Three-Phase Glass Capillary Devices

  • Conference paper
  • First Online:
UK Colloids 2011

Part of the book series: Progress in Colloid and Polymer Science ((PROGCOLLOID,volume 139))

Abstract

Monodisperse core/shell drops with aqueous core and poly(dimethylsiloxane) (PDMS) shell of controllable thickness have been produced using a glass microcapillary device that combines co-flow and flow-focusing geometries. The throughput of the droplet generation was high, with droplet generation frequency in the range from 1,000 to 10,000 Hz. The size of the droplets can be tuned by changing the flow rate of the continuous phase. The technique enables control over the shell thickness through adjusting the flow rate ratio of the middle to inner phase. As the flow rate of the middle and inner phase increases, the droplet breakup occurs in the dripping-to-jetting transition regime, with each double emulsion droplet containing two monodisperse internal aqueous droplets. The resultant drops can be used subsequently as templates for monodisperse polymer capsules with a single or multiple inner compartments, as well as functional vesicles such as liposomes, polymersomes and colloidosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sawalha H, Schroën K, Boom R (2009) AIChE J 55:2827

    Article  CAS  Google Scholar 

  2. Kim JW, Utada AS, Fernández-Nieves A, Hu Z, Weitz DA (2007) Angew Chem Int Ed 46:1819

    Article  CAS  Google Scholar 

  3. Fernández-Nieves A, Vitelli V, Utada AS, Link DR, Márquez M, Nelson DR, Weitz DA (2007) Phys Rev Lett 99:157801

    Article  Google Scholar 

  4. Shum HC, Lee D, Yoon I, Kodger T, Weitz DA (2008) Langmuir 24:7651

    Article  CAS  Google Scholar 

  5. Lorenceau E, Utada AS, Link DR, Cristobal G, Joanicot M, Weitz DA (2005) Langmuir 21:9183

    Article  CAS  Google Scholar 

  6. Lee D, Weitz DA (2008) Adv Mater 20:3498

    Article  CAS  Google Scholar 

  7. Walde P, Ichikawa S (2001) Biomol Eng 18:143

    Article  CAS  Google Scholar 

  8. Shah RK, Shum HC, Rowat AC, Lee D, Agresti JJ, Utada AS, Chu LY, Kim JW, Fernandez-Nieves A, Martinez CJ, Weitz DA (2008) Mater Today 11:18

    Article  CAS  Google Scholar 

  9. Atkin R, Davies R, Hardy J, Vincent B (2004) Macromolecules 37:7979

    Article  CAS  Google Scholar 

  10. Nakagawa K, Iwamoto S, Nakajima M, Shono A, Satoh K (2004) J Colloid Interface Sci 278:198

    Article  CAS  Google Scholar 

  11. Donath E, Sukhorukov GB, Caruso F, Davis SA, Möhwald H (1998) Angew Chem Int Ed 37:2201

    Article  Google Scholar 

  12. Han JH, Koo BM, Kim JW, Suh KD (2008) Chem Commun 28:984

    Article  Google Scholar 

  13. Abate AR, Weitz DA (2009) Small 5:2030

    Article  CAS  Google Scholar 

  14. Utada AS, Lorenceau E, Link DR, Kaplan PD, Stone HA, Weitz DA (2005) Science 38:537

    Article  Google Scholar 

  15. Sun BJ, Shum HC, Holtze C, Weitz DA (2010) ACS Appl Mater Interfaces 2:3411

    Article  CAS  Google Scholar 

  16. Utada AS, Fernandez-Nieves A, Stone HA, Weitz DA (2007) Phys Rev Lett 99:4

    Article  Google Scholar 

  17. Lee D, Weitz DA (2009) Small 5:1935

    Google Scholar 

  18. Gasparini G, Kosvintsev SR, Stillwell MT, Holdich RG (2008) Colloid Surf B 61:199

    Article  CAS  Google Scholar 

  19. Kim SH, Kim JW, Cho JC, Weitz DA (2011) Lab Chip 11:3162

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The work was supported by the Engineering and Physical Sciences Research Council (EPSRC) of the United Kingdom (grant reference number: EP/HO29923/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Goran T. Vladisavljević .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vladisavljević, G.T., Shum, H.C., Weitz, D.A. (2012). Control over the Shell Thickness of Core/Shell Drops in Three-Phase Glass Capillary Devices. In: Starov, V., Griffiths, P. (eds) UK Colloids 2011. Progress in Colloid and Polymer Science, vol 139. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28974-3_20

Download citation

Publish with us

Policies and ethics