Skip to main content

Influence of Anions of the Hofmeister Series on the Size of ZnS Nanoparticles Synthesised via Reverse Microemulsion Systems

  • Conference paper
  • First Online:
Book cover UK Colloids 2011

Part of the book series: Progress in Colloid and Polymer Science ((PROGCOLLOID,volume 139))

  • 1483 Accesses

Abstract

Zinc sulfide nanocrystals with sizes of 4–7 nm were obtained by insufflation of hydrogen sulfide through reverse microemulsions, based on aqueous solutions of different zinc salts, nonionic surfactants and cyclohexane. The influence of the Hofmeister anions acetate, chloride, bromide, nitrate, iodide, and perchlorate on the micelles and thereof formed nanoparticles was studied by means of dynamic light scattering (DLS), X-ray diffractometry (XRD), UV-Vis spectroscopy and transmission electron microscopy (TEM). The sizes of micelles are significantly influenced by the kosmotropic or chaotropic nature of the actual anion, present in the water pools of reverse micelles: the diameter of the spherical ZnS nanoparticles, synthezised in these micelles, correlates with their size and thus follows the direction of the Hofmeister series. Several possible mechanisms are proposed to explain the influence of the anions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Efros AL, Efros AL (1982) Sov Phys Semicond USSR 16:772–775

    Google Scholar 

  2. Brus LE (1984) J Chem Phys 80:4403–4409

    Article  CAS  Google Scholar 

  3. Henglein A (1989) Chem Rev 89:1861–1873

    Article  CAS  Google Scholar 

  4. Horst W (1993) Angew Chem Int Edit Engl 32:41–53

    Article  Google Scholar 

  5. Popović IG, Katsikas L, Weller H (1994) Polymer Bull 32:597–603

    Article  Google Scholar 

  6. Alivisatos AP (1996) Science 271:933–937

    Article  CAS  Google Scholar 

  7. Manzoor K, Vadera SR, Kumar N, Kutty TRN (2004) Appl Phys Lett 84:284–286

    Article  CAS  Google Scholar 

  8. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Science 307:538–544

    Article  CAS  Google Scholar 

  9. Rufino MNY, Galván MCÁ, Del Valle F, Villoria A, José M, José LGF (2009) ChemSusChem 2:471–485

    Article  Google Scholar 

  10. Chen L, Shang Y, Xu J, Liu H, Hu Y (2006) J Dispers Sci Technol 27:839–842

    Article  CAS  Google Scholar 

  11. Herrig H, Hempelmann R (1997) Nanostruct Mater 9:241–244

    Article  CAS  Google Scholar 

  12. Xu C, Ni Y, Zhang Z, Ge X, Ye Q (2003) Mater Lett 57:3070–3076

    Article  CAS  Google Scholar 

  13. Sottmann T, Strey R (2005) In: Lyklema J (ed) Fundamentals in interface and colloid science, vol 5. Elsevier, Amsterdam, ch. 5

    Google Scholar 

  14. Hofmeister F (1888) Arch Exp Pathol Pharmakol 24:247–260

    Article  Google Scholar 

  15. Von Hippel PH, Wong KY (1964) Science 145:577–580

    Article  Google Scholar 

  16. Long FA, McDevit WF (1952) Chem Rev 51:119–169

    Article  CAS  Google Scholar 

  17. Weissenborn PK, Pugh RJ (1995) Langmuir 11:1422–1426

    Article  CAS  Google Scholar 

  18. Baldwin RL (1996) Biophys J 71:2056–2063

    Article  CAS  Google Scholar 

  19. Collins KD, Neilson GW, Enderby JE (2007) Biophys Chem 128:95–104

    Article  CAS  Google Scholar 

  20. Levinger NE (2002) Science 298:1722–1723

    Article  CAS  Google Scholar 

  21. Tsigankov VS, Sementin SA, Kucherenko AO, Okhotnikova LK (2002) Biofizika 47:863–865

    Google Scholar 

  22. Boström M, Deniz V, Franks GV, Ninham BW (2006) Advances in colloid and interface science 123–126:5–15

    Google Scholar 

  23. Hofmeister effects special issue (2004) Curr Opin Colloid Interf Sci 9:1–197

    Google Scholar 

  24. Beck Ch, Härtl W, Hempelmann R (1998) J Mater Res 13:3174–3180

    Article  CAS  Google Scholar 

  25. Provencher SW (1982) Comput Phys Commun 27:213–227

    Article  Google Scholar 

  26. Krill CE, Birringer R (1998) Philos Mag A 77:621–640

    Article  CAS  Google Scholar 

  27. Scherrer P (1918) Göttinger Nachrichten 2:96–100

    Google Scholar 

  28. Gong S, Yao D, Jiang H, Xiao H (2008) Phys Lett A 372:3325–3332

    Article  CAS  Google Scholar 

  29. Sachs JN, Woolf TB (2003) J Am Chem Soc 125:8742– 8743

    Article  CAS  Google Scholar 

  30. Chang GG, Hung TM, Hung HC (2000) Proc Natl Sci Counc Repub China B 24:89–100

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Hempelmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rukhadze, M., Wotocek, M., Kuhn, S., Hempelmann, R. (2012). Influence of Anions of the Hofmeister Series on the Size of ZnS Nanoparticles Synthesised via Reverse Microemulsion Systems. In: Starov, V., Griffiths, P. (eds) UK Colloids 2011. Progress in Colloid and Polymer Science, vol 139. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28974-3_12

Download citation

Publish with us

Policies and ethics