FACS Based High Throughput Screening Systems for Gene Libraries in Double Emulsions

  • Radivoje ProdanovicEmail author
  • Raluca Ostafe
  • Milan Blanusa
  • Ulrich Schwaneberg
Conference paper
Part of the Progress in Colloid and Polymer Science book series (PROGCOLLOID, volume 139)


A flow cytometry based high throughput screening system for glucose oxidase (GOx) gene libraries in double emulsions was developed. Firstly, encapsulation of yeast cells in double emulsion was optimized by changing the ABIL EM90 concentration in light mineral oil from 2.9% to 1.5%. This enabled formation of larger water droplets and more efficient yeast cell encapsulation. Several fluorescent assays for hydrogen peroxide were tested and the 3-carboxy-7-(4′-aminophenoxy)-coumarine (APCC) oxidation by horseradish peroxidase based assay best fit the requirements of the double emulsion technology. Using an optimized substrate solution consisting of 0.5 mM APCC, 40 mM glucose and 10 U/mL of horse radish peroxidase, a referent gene library containing 107 yeast cells was sorted in 30 min and enriched from 1% to 15% of yeast cells expressing wt GOx.


Yeast Cell Gene Library Horse Radish Peroxidase Double Emulsion Primary Emulsion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Matsuura T, Yomo T (2006) J Biosci Bioeng 101(6):449–456CrossRefGoogle Scholar
  2. 2.
    Antipov E, Cho AE, Wittrup KD, Klibanov AM (2008) Proc Natl Acad Sci USA 105(46):17694–17699CrossRefGoogle Scholar
  3. 3.
    Lipovsek D, Antipov E, Armstrong KA, Olsen MJ, Klibanov AM, Tidor B, Wittrup KD (2007) Chem Biol 14(10):1176–1185CrossRefGoogle Scholar
  4. 4.
    Becker S, Michalczyk A, Wilhelm S, Jaeger KE, Kolmar H (2007) Chembiochem 8(8):943–949CrossRefGoogle Scholar
  5. 5.
    Taly V, Kelly BT, Griffiths AD (2007) Chembiochem 8(3):263–272CrossRefGoogle Scholar
  6. 6.
    Aharoni A, Amitai G, Bernath K, Magdassi S, Tawfik DS (2005) Chem Biol 12(12):1281–1289CrossRefGoogle Scholar
  7. 7.
    Mastrobattista E, Taly V, Chanudet E, Treacy P, Kelly BT, Griffiths AD (2005) Chem Biol 12(12):1291–1300CrossRefGoogle Scholar
  8. 8.
    Bershtein S, Tawfik DS (2008) Curr Opin Chem Biol 12(2):151–158CrossRefGoogle Scholar
  9. 9.
    Hardiman E, Gibbs M, Reeves R, Bergquist P (2010) Appl Biochem Biotechnol 161(1–8):301–312CrossRefGoogle Scholar
  10. 10.
    Watt BE, Proudfoot AT, Vale JA (2004) Toxicol Rev 23(1):51–57CrossRefGoogle Scholar
  11. 11.
    Kirstein D, Kuhn W (1981) Lebensmittel Industrie 28(5):205–208Google Scholar
  12. 12.
    Pilone MS, Pollegioni L (2002) Biocatal Biotransform 20(3):145–159CrossRefGoogle Scholar
  13. 13.
    MacLachlan J, Wotherspoon ATL, Ansell RO, Brooks CJW (2000) J Steroid Biochem Mol Biol 72(5):169–195CrossRefGoogle Scholar
  14. 14.
    Dzyadevych SV, Arkhypova VN, Soldatkin AP, El’skaya AV, Martelet C, Jaffrezic-Renault N (2008) Irbm 29(2–3):171–180CrossRefGoogle Scholar
  15. 15.
    Liu Q, Xu XH, Ren GL, Wang W (2006) Prog Chem 18(11):1530–1537Google Scholar
  16. 16.
    Khanna PL, SJCCC (Santa Clara), Ullman EF (Atherton, California) (1982) Method for the determination of peroxidase using fluorogenic substrates. In: Office USP (ed). vol 4857455. USA: Syntex (U.S.A) Inc., Palo AltoGoogle Scholar
  17. 17.
    Agrawal A, Tratnyek PG (1996) Environ Sci Technol 30(1):153–160CrossRefGoogle Scholar
  18. 18.
    Chilvers KF, Perry JD, James AL, Reed RH (2001) J Appl Microbiol 91(6):1118–1130CrossRefGoogle Scholar
  19. 19.
    Keston AS, Brandt R (1965) Anal Biochem 11(1):1–5CrossRefGoogle Scholar
  20. 20.
    Maeda H, Futkuyasu Y, Yoshida S, Fukuda M, Saeki K, Matsuno H, Yamauchi Y, Yoshida K, Hirata K, Miyamoto K (2004) Angew Chem Int Ed 43(18):2389–2391CrossRefGoogle Scholar
  21. 21.
    Zhu ZW, Momeu C, Zakhartsev M, Schwaneberg U (2006) Biosens Bioelectron 21(11):2046–2051CrossRefGoogle Scholar
  22. 22.
    Prodanovic R, Ostafe R, Scacioc A, Schwaneberg U (2011) Comb Chem High Throughput Screen 14(1):55–60Google Scholar
  23. 23.
    Frederick KR, Tung J, Emerick RS, Masiarz FR, Chamberlain SH, Vasavada A, Rosenberg S, Chakraborty S, Schopter LM, Massey V (1990) J Biol Chem 265(7):3793–3802Google Scholar
  24. 24.
    Nohta H, Watanabe T, Nagaoka H, Ohkura Y (1991) Anal Sci 7(3):437–441CrossRefGoogle Scholar
  25. 25.
    Pyare LK, San Jose, Chang CC, Ullman EF (1982) United States Patent 4,857,455Google Scholar
  26. 26.
    Setsukinai K, Urano Y, Kakinuma K, Majima HJ, Nagano T (2003) J Biol Chem 278(5):3170–3175CrossRefGoogle Scholar
  27. 27.
    Rota C, Chignell CF, Mason RP (1999) Free Radic Biol Med 27(7–8):873–881CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Radivoje Prodanovic
    • 1
    • 2
    Email author
  • Raluca Ostafe
    • 2
    • 3
  • Milan Blanusa
    • 2
  • Ulrich Schwaneberg
    • 2
    • 3
  1. 1.University of BelgradeBelgradeSerbia
  2. 2.Jacobs University BremenBremenGermany
  3. 3.RWTH Aachen UniversityAachenGermany

Personalised recommendations