Spreading and Evaporation of Surfactant Solution Droplets

  • Hezekiah Agogo
  • Sergey Semenov
  • Francisco Ortega
  • Ramón G. RubioEmail author
  • Víctor M. Starov
  • Manuel G. Velarde
Conference paper
Part of the Progress in Colloid and Polymer Science book series (PROGCOLLOID, volume 139)


Evaporation of liquid droplets in gas volume has implications in different areas: spray drying and production of fine powders [1–3], spray cooling, fuel preparation, air humidifying, heat exchangers, drying in evaporation chambers of air conditioning systems, fire extinguishing, fuel spray auto ignition (Diesel), solid surface templates from evaporation of nanofluid drops (coffee-ring effect), spraying of pesticides[1–4], painting, coating and inkjet printing, printed MEMS devices, micro lens manufacturing, spotting of DNA microarray data [3–5]. Because of such wide range of industrial applications this phenomenon has been under investigation for many years, both in the case of pure and multicomponent fluids. The studies encompass different conditions: constant pressure and temperature, elevated pressure, fast compression, still gas atmosphere and turbulent reacting flows, strongly and weakly pinning substrates [1, 2]. Even though experimental, theoretical and computer simulation studies have been carried out [1–11], and have taken into account different physical processes; heat transfer inside droplets, mass diffusion in bi- and multi- component fluids, droplet interactions in sprays, turbulence, radiation adsorption, thermal conductivity of the solid substrate, Marangoni convection inside the droplets.


Contact Angle Surfactant Concentration Contact Line Evaporation Process Contact Angle Hysteresis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Semenov S, Starov VM, Velarde MG, Rubio RG (2011) Droplets evaporation: problems and solutions, European physical journal special topics. Eur Phys J Spec Top 197:265–278CrossRefGoogle Scholar
  2. 2.
    Bourges-Monnier C, Shanahan M (2005) Influence of evaporation on contact angle. Langmuir 11:2820–2829CrossRefGoogle Scholar
  3. 3.
    Sefiane K, Tadrist L, Douglas M (2003) Int J Heat Mass Trans 46:4527–4534CrossRefGoogle Scholar
  4. 4.
    Hua Hu, Ronald G (2002) Larson. J Phys Chem B 106:1334–1344CrossRefGoogle Scholar
  5. 5.
    Cioulachjian S, Launay S, Boddaert S, vLallemand M (2010) Int J Therm Sci 49:859–866CrossRefGoogle Scholar
  6. 6.
    Doganci MD, Sesli BU, Erbil HY (2011) Diffusion-controlled evaporation of sodium dodecyl sulfate solutions drops placed on a hydrophobic substrate. J Colloid Interf Sci 362:524–531CrossRefGoogle Scholar
  7. 7.
    Sultan E, Boudaoud A, Amar MB (2005) Evaporation of a thin film: diffusion of the vapour and marangoni instabilities. J Fluid Mech 543:183–202CrossRefGoogle Scholar
  8. 8.
    Ye A, Rednikov P (2011) Colinet, truncated versus extended microfilms at a vapor-liquid contact line on a heated substrate. Langmuir 27(5):1758–1769CrossRefGoogle Scholar
  9. 9.
    Ajaev VS (2005) Spreading of thin volatile liquid droplets on uniformly heated surfaces. J Fluid Mech 528:279–296CrossRefGoogle Scholar
  10. 10.
    Moroi Y, Rusdi M, Kubo I (2004) J Phys Chem B 108:6351–6358CrossRefGoogle Scholar
  11. 11.
    Semenov S, Starov VM, Rubio RG, Agogo H, Velarde MG (2011) Evaporation of sessile water droplets: universal behavior in presence of contact angle hysteresis. Colloid Surf. A Physicochem Eng Asp 391:135–144Google Scholar
  12. 12.
    Ritacco H, Ortega F, Rubio RG, Ivanova N, Starov VM (2010) Equilibrium and dynamic surface properties of trisiloxane aqueous solutions part 1 experimental results. Colloids Surf A Physicochem Eng Asp 365:199–203CrossRefGoogle Scholar
  13. 13.
    Ivanova N, Starov V, Johnson D, Hilal N, Rubio RG (2009) Spreading of aqueous solutions of trisiloxanes and conventional surfactants over PTFE AF coated silicon wafers. Langmuir 25:3564–3570CrossRefGoogle Scholar
  14. 14.
    Semenov S, Starov VM, Rubio RG, Velarde MG (2010) Instantaneous distribution of fluxes in the course of evaporation of sessile liquid droplets: computer simulations. Colloids Surf A Physicochem Eng Asp 372:127–134CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Hezekiah Agogo
    • 1
  • Sergey Semenov
    • 2
  • Francisco Ortega
    • 1
  • Ramón G. Rubio
    • 1
    Email author
  • Víctor M. Starov
    • 2
  • Manuel G. Velarde
    • 3
  1. 1.Departamento de Química Física IUniversidad ComplutenseMadridSpain
  2. 2.Department of Chemical EngineeringLoughborough UniversityLoughboroughUK
  3. 3.Unidad de Fluidos, Instituto PluridisciplinarUniversidad ComplutenseMadridSpain

Personalised recommendations