ABL-Flow over Hills: A Review of Theory and Wind Tunnel Studies

  • Graciana PetersenEmail author
  • Bernd Leitl
  • Michael Schatzmann
Part of the Springer Proceedings in Physics book series (SPPHY, volume 141)


Flow over complex terrain and hills is a concern in many research areas such as determination of air pollution zones, predictions of smoke movement from forest fires, wind energy assessment and siting of wind energy converting systems (WECS). It can be examined by means of field studies, theoretical analysis, wind tunnel simulation and numerical modelling. Concerning numerical modelling of flow over hills, a problem is scaling up the unresolved effects of flow interactions with the fine-scale topography and combining this in regional or global scale models, [2]. Linear models, such as WAsP, are not valid for steep terrain, due to the closure assumptions in separation areas. It is still a challenge for computer modellers to determine recirculation zones in high resolution models such as Reynolds Averaged Navier-Stokes (RANS) or large-eddy simulation (LES), [25].


Wind Tunnel Atmospheric Boundary Layer Wind Tunnel Experiment Wind Engineer Industrial Aerodynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Athanassiadou, M., Castro, I.P.: Neutral flow over a series of rough hills: A laboratory experiment. Boundary Layer Meteorology 101, 1–30 (2001)CrossRefGoogle Scholar
  2. 2.
    Ayotte, K.W., Hughes, D.E.: Observations of boundary-layer wind-tunnel flow over isolated ridges of varying steepness and roughness. Boundary-Layer Meteorology 112, 525–556 (2004)CrossRefGoogle Scholar
  3. 3.
    Bechmann, A., Johansen, J., Sorensen, N.N.: The bolund experiment -design of measurement campaign using cfd (2007)Google Scholar
  4. 4.
    Bradley, E.F.: An experimental study of the profiles of wind speed, shearing stress and turbulence at the crest of a large hill. Quart. J. Roy. Meteorol. Soc. 106, 101–124 (1980)CrossRefGoogle Scholar
  5. 5.
    Britter, R.E., Hunt, J.C.R., Richards, K.J.: Air flow over a two-dimensional hill: studies of velocity speed-up, roughness effects and turbulence. Quart. J. R. Met. Soc. 107(451), 91–110 (1981)CrossRefGoogle Scholar
  6. 6.
    Cao, S., Tamura, T.: Effects of roughness blocks on atmospheric boundary layer flow over a two-dimensional low hill with/without sudden roughness change. Journal of Wind Engineering and Industrial Aerodynamics 95, 679–695 (2007)CrossRefGoogle Scholar
  7. 7.
    Cao, S., Tamura, T.: Experimental study on roughness effects on turbulent boundary layer flow over a two-dimensional steep hill. Journal of Wind Engineering and Industrial Aerodynamics 94, 119 (2006)CrossRefGoogle Scholar
  8. 8.
    Castro, F.A., Palma, J.M.L.M., Silva Lopes, A.: Simulation of the askervein flow. part 1: Reynolds averaged navier–stokes equations. Boundary Layer Meteorology 107, 501–530 (2003)CrossRefGoogle Scholar
  9. 9.
    Ferreira, A.D., Lopes, A.M.G., Viegas, D.X., Sousa, A.C.M.: Experimental and numerical simulation of flow around two-dimensional hills. Journal of Wind Engineering and Industrial Aerodynamics 54/55, 173–181 (1995)CrossRefGoogle Scholar
  10. 10.
    Ishihara, T., Hibi, K., Oikawa, S.: A wind tunnel study of turbulent flow over a three-dimensional steep hill. Journal of Wind Engineering and Industrial Aerodynamics 83, 95–107 (1999)CrossRefGoogle Scholar
  11. 11.
    Jackson, P.S., Hunt, J.C.R.: Turbulent wind flow over a low hill. Quart. J. R. Met. Soc. 101, 929–955 (1975)CrossRefGoogle Scholar
  12. 12.
    Kevlahan, N.K.-R.: Rapid distortion of turbulent structures. Applied Scientific Research 51, 411–415 (1993)zbMATHCrossRefGoogle Scholar
  13. 13.
    Silva Lopes, A., Palma, J.M.L.K., Castro, F.A.: Simulation of the askervein flow. part 2: Large-eddy simulations. Boundary Layer Meteorology 125, 85–108 (2007)CrossRefGoogle Scholar
  14. 14.
    Lubitz, W.D., White, B.R.: Wind-tunnel and field investigation of the effect of local wind direction on speed-up over hills. Journal of Wind Engineering and Industrial Aerodynamics 95, 639–661 (2007)CrossRefGoogle Scholar
  15. 15.
    Mason, P.J.: Flow over the summit of an isolated hill. Boundary Layer Meteorology 37, 385–405 (1986)CrossRefGoogle Scholar
  16. 16.
    Meroney, R.N.: Wind-tunnel modelling of hill and vegetation influence on wind power availability task1: Literature review. Technical report, Meteorological Services U.S. Windpower (1993)Google Scholar
  17. 17.
    Mickle, R.E., Cook, N.J., Hoff, A.M., Jensen, N.O., Salmon, J.R., Taylor, P.A., Tetzlaff, G., Teunissen, H.W.: The askervein hill project: Vertical profiles of wind and turbulence. Boundary Layer Meteorology 43, 143–169 (1988)CrossRefGoogle Scholar
  18. 18.
    Miller, C.A., Davenport, A.G.: Guidelines for the calculation of wind speed-ups in complex terrain. Journal of Wind Engineering and Industrial Aerodynamics 74-76, 189–197 (1998)CrossRefGoogle Scholar
  19. 19.
    Salmon, J.R., Teunissen, H.W., Mickle, R.E., Taylor, P.A.: The kettles hill project: Field observations, wind-tunnel simulations and numerical model predictions for flow over a low hill. Boundary Layer Meteorology 43, 309–343 (1988)CrossRefGoogle Scholar
  20. 20.
    Snyder, Thompson, Eskridge, Lawson, Castro, Lee, Hunt, Ogawa: The strucure of strongly stratified flow over hills: dividing-streamline concept. J. Fluid. Mech. 152, 249–288 (1985)Google Scholar
  21. 21.
    Snyder, W.H.: Guideline for fluid modeling of atmospheric diffusion. Technical report, United States Environmental Protection Agency (1981)Google Scholar
  22. 22.
    Taylor, P.A., Teunissen, H.W.: The askervein hill project: Overview and background data. Boundary Layer Meteorology 39, 15–39 (1987)CrossRefGoogle Scholar
  23. 23.
    Teunissen, H.W., Shokr, M.E., Bowen, A.J., Wood, C.J., Green, D.W.R.: The askervein hill project: Wind-tunnel simulations at three length scales. Boundary Layer Meteorology 40, 1–29 (1987)CrossRefGoogle Scholar
  24. 24.
    Wood, N.: The onset of separation in neutral, turbulent flow over hills. Boundary Layer Meteorology 76, 137–164 (1995)CrossRefGoogle Scholar
  25. 25.
    Wood, N.: Wind flow over complex terrain: A historical overview and the prospect for large-eddy modelling. Boundary Layer Meteorology 96, 11–32 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Graciana Petersen
    • 1
    Email author
  • Bernd Leitl
    • 1
  • Michael Schatzmann
    • 1
  1. 1.Meteorological InstituteUniversity of HamburgHamburgGermany

Personalised recommendations