Two-Point Enstrophy Statistics of Fully Developed Turbulence

  • Michael WilczekEmail author
  • Rudolf Friedrich
Part of the Springer Proceedings in Physics book series (SPPHY, volume 141)


We study the two-point enstrophy statistics of three-dimensional stationary homogeneous isotropic turbulence in the framework of kinetic equations for the probability density functions. The unclosed terms are estimated from data obtained from direct numerical simulations. The results yield insights into the statistics of enstrophy production and dissipation as well as the interaction of different spatial scales.


Direct Numerical Simulation Velocity Increment Homogeneous Isotropic Turbulence Reynolds Number Dependence Unclosed Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lundgren, T.S.: Distribution Functions in the Statistical Theory of Turbulence. Physics of Fluids 10(5), 969 (1967)CrossRefGoogle Scholar
  2. 2.
    Monin, A.S.: Equations of turbulent motion. Prikl. Mat. Mekh. 31(6), 1057 (1967)zbMATHGoogle Scholar
  3. 3.
    Novikov, E.A.: Kinetic equations for a vortex field. Soviet Physics-Doklady 12(11), 1006 (1968)Google Scholar
  4. 4.
    Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  5. 5.
    Novikov, E.A.: A new approach to the problem of turbulence, based on the conditionally averaged Navier-Stokes equations. Fluid Dynamics Research 12(2), 107 (1993)CrossRefGoogle Scholar
  6. 6.
    Wilczek, M., Friedrich, R.: Dynamical origins for non-Gaussian vorticity distributions in turbulent flows. Physical Review E 80(1), 016316 (2009)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Wilczek, M., Daitche, A., Friedrich, R.: On the velocity distribution in homogeneous isotropic turbulence: correlations and deviations from Gaussianity. J. Fluid Mech. 676, 191 (2011)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Novikov, E.A., Dommermuth, D.G.: Conditionally averaged dynamics of turbulence. Mod. Phys. Lett. B 8(23), 1395 (1994)CrossRefGoogle Scholar
  9. 9.
    Tennekes, H., Lumley, J.L.: A First Course in Turbulence. MIT Press, Cambridge (1983)Google Scholar
  10. 10.
    Novikov, E.A.: Statistical Balance of Vorticity and a New Scale for Vortical Structures in Turbulence. Phys. Rev. Lett. 71(17), 2718 (1993)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsWestfälische Wilhelms-UniversitätMünsterGermany

Personalised recommendations