Skip to main content

Protein-Protein Interaction Targets to Inhibit HIV-1 Infection

  • Chapter
  • First Online:
Protein-Protein Interactions

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 8))

  • 2342 Accesses

Abstract

Efforts to interfere with four key protein-protein interactions in the HIV-1 lifecycle with the goal of achieving clinically-relevant, orally administered HIV-1 therapies are reviewed. These four targets: the HIV-1 gp120/human CD4 interaction, the HIV-1 gp41 six-helix bundle formation, the human LEDGF/p75-integrase interaction, and HIV-1 protease dimerization each present unique challenges to the discovery of viable small molecule inhibitors. Background information from the literature is provided. A class of inhibitors which target gp120 from which an orally dosed member has been advanced into Phase II clinical studies as well as other small molecule approaches to disrupt the gp120/CD4 interaction are discussed. The unrealized efforts to find a small-molecule inhibitor of gp41 six-helix bundle formation that is suitable for clinical studies are described, including a summary of the work on effective, peptidic inhibitors that lack the properties needed for oral use. An overview of the progress to identify small molecule inhibitors of the LEDGF/HIV-1 p75-integrase interaction and the dimerization of the HIV-1 protease enzyme describes the preclinical compounds of greatest interest and discusses the rationale behind their design/activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fauci A (2006) Twenty-five years of HIV/AIDS. Science 313:409

    CAS  Google Scholar 

  2. Hashimoto C, Tanaka T, Narumi T et al (2011) The successes and failures of HIV drug discovery. Exp Opin Drug Disc 10:1067–1090

    Google Scholar 

  3. Mehellou Y, De Clercq E (2010) Twenty-six years of anti-HIV drug discovery: where do we stand and where do we go? J Med Chem 53:521–538

    CAS  Google Scholar 

  4. Taiwo B, Hicks C, Eron J (2010) Unmet therapeutic needs in the new era of combination antiretroviral therapy for HIV-1. J Antimicrob Chemother 65:1100–1107

    CAS  Google Scholar 

  5. De Clercq E (2009) Anti-HIV drugs: 25 compounds approved within 25 years after the discovery of HIV. Int J Antimicrob Agents 33:307–320

    Google Scholar 

  6. Frampton JE, Croom KF (2006) Efavirenz/emtricitabine/tenofovir disoproxil fumarate: triple combination tablet. Drugs 66:1501–1512

    CAS  Google Scholar 

  7. Killingley B, Pozniak A (2007) The first once-daily single-tablet regimen for the treatment of HIV-infected patients. Drugs Today 43:427–442

    CAS  Google Scholar 

  8. Tilton JC, Doms RW (2010) Entry inhibitors in the treatment of HIV-1 infection. Antiviral Res 85:91–100

    CAS  Google Scholar 

  9. Lobritz MA, Ratcliff AN, Arts EJ (2010) HIV-1 entry, inhibitors, and resistance. Viruses 2:1069–1105

    CAS  Google Scholar 

  10. Wyatt R, Sodroski J (1998) The HIV-1 envelope glycoproteins: fusogens, antigens, and immunogens. Science 280:1884–1888

    CAS  Google Scholar 

  11. Arrildt KT, Joseph SB, Swanstrom R (2012) The HIV-Env protein. A coat of many colors. Curr HIV/AIDS Rep. doi:10.1007/s11904-011-0107-3

  12. Blair WS, Cao J, Jackson L et al (2007) Identification and characterization of UK-201844, a novel inhibitor that interferes with human immunodeficiency virus type 1 gp160 processing. Antimicrob Agents Chemother 51:3554–3561

    CAS  Google Scholar 

  13. Kwong PD, Wyatt R, Sattentau QJ et al (2000) Oligomeric modeling and electrostatic analysis of the gp120 envelope glycoprotein of human immunodeficiency virus. J Virol 74:1961–1972

    CAS  Google Scholar 

  14. Kwong PD, Wyatt R, Robinson J et al (1998) Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 393:648–659

    CAS  Google Scholar 

  15. Huang C, Tang M, Zhang M-Y et al (2005) Structure of a V3-containing HIV-1 gp120 core. Science 310:1025–1028

    CAS  Google Scholar 

  16. Kwong PD, Wyatt R, Majeed S et al (2000) Structures of HIV-1 gp120 envelope glycoproteins from laboratory-adapted and primary isolates. Structure 8:1329–1339

    CAS  Google Scholar 

  17. Chen B, Vogan EM, Gong H (2005) Determining the structure of an unliganded and fully glycosylated SIV gp120 envelope glycoprotein. Structure 13:197–211

    CAS  Google Scholar 

  18. Chen B, Vogan EM, Gong H et al (2005) Structure of an unliganded simian immunodeficiency virus gp120 core. Nature 433:834–841

    CAS  Google Scholar 

  19. Schon A, Madani N, Klein JC et al (2006) Thermodynamics of binding of a low-molecular-weight CD4 mimetic to HIV-1 gp120. Biochemistry 45:10973–10980

    Google Scholar 

  20. Rizzut CD, Wyatt R, Hernandez-Ramos N et al (1998) A conserved HIV gp120 glycoprotein structure involved in chemokine receptor binding. Science 280:1949–1953

    Google Scholar 

  21. Kuritzkes DR (2009) HIV-1 entry inhibitors: an overview. Curr Opin HIV AIDS 4:82–87

    Google Scholar 

  22. Caffrey M (2011) HIV envelope: challenges and opportunities for development of entry inhibitors. Trends Microbiol 19:191–197

    CAS  Google Scholar 

  23. Hertje M, Zhou M, Dietrich U (2010) Inhibition of HIV-1 entry: multiple keys to close the door. ChemMedChem 5:1825–1835

    CAS  Google Scholar 

  24. Teixeira C, Gomes JR, Gomes P et al (2011) Viral surface glycoproteins, gp120 and gp41, as potential drug targets against HIV-1: brief overview one quarter of a century past the approval of zidovudine, the first anti-retroviral drug. Eur J Med Chem 46:979–992

    CAS  Google Scholar 

  25. Este JA (2011) Inhibition of HIV entry. Method Prin Med Chem 50:29–50

    CAS  Google Scholar 

  26. Wang H-g, Kadow J, Lin P-F (2005) HIV gp120 envelope as a therapeutic target. Drugs Future 30:359–367

    Google Scholar 

  27. Kadow J, Wang HG, Lin PF (2006) Small-molecule HIV-1 gp120 inhibitors to prevent HIV-1 entry: an emerging opportunity for drug development. Curr Opin Invest Drugs 7:721–726

    CAS  Google Scholar 

  28. Lin P-F, Kadow J, Alexander L (2007) Inhibitors that target gp120-CD4 interactions, in entry inhibitors. In: Reeves JD, Derdeyn CA (eds) HIV therapy. Birkhäuser Verlag, Basel

    Google Scholar 

  29. Kadow JF, Bender J, Regueiro-Ren A et al (2011) Discovery and development of HIV-1 entry inhibitors that target gp120. In: Kazmierski WM (ed) Antiviral drugs: from basic discovery through clinical trials. Wiley, Hoboken

    Google Scholar 

  30. Wyatt R, Kwong PD, Desjardins E et al (1998) The antigenic structure of the HIV gp120 envelope glycoprotein. Nature 393:705–711

    CAS  Google Scholar 

  31. Zhou T, Xu L, Dey B et al (2007) Structural definition of a conserved neutralization epitope on HIV-1 gp120. Nature 445:732–737

    CAS  Google Scholar 

  32. Chen L, Kwon Y-D, Zhou T et al (2009) Structural basis of immune evasion at the site of CD4 attachment on HIV-1 gp120. Science 326:1123–1127

    CAS  Google Scholar 

  33. Xie H, Ng D, Savinov SN et al (2007) Structure-activity relationships in the binding of chemically derivatized CD4 to gp120 from human immunodeficiency virus. J Med Chem 50:4898–4908

    CAS  Google Scholar 

  34. Myszka DG, Sweet RW, Hensley P et al (2000) Energetics of the HIV gp120-CD4 binding reaction. Proc Natl Acad Sci USA 97:9026–9031

    CAS  Google Scholar 

  35. Xiang S-H, Kwong PD, Gupta R et al (2002) Mutagenic stabilization and/or disruption of a CD4-bound state reveals distinct conformations of the human immunodeficiency virus type 1 gp120 envelope glycoprotein. J Virol 76:9888–9899

    CAS  Google Scholar 

  36. Yuan W, Bazick J, Sodroski J (2006) Characterization of the multiple conformational states of free monomeric and trimeric human immunodeficiency virus envelope glycoproteins after fixation by cross-linker. J Virol 80:6725–6737

    CAS  Google Scholar 

  37. Dowd CS, Leavitt S, Babcock G et al (2002) β-turn Phe in HIV-1 env binding site of CD4 and CD4 mimetic miniprotein enhances env binding affinity but is not required for activation of co-receptor/17b site. Biochemistry 41:7038–7046

    CAS  Google Scholar 

  38. Kassa A, Madani N, Schon A et al (2009) Transitions to and from the CD4-bound conformation are modulated by a single-residue change in the human immunodeficiency virus type 1 gp120 inner domain. J Virol 83:8364–8378

    CAS  Google Scholar 

  39. Guo Q, Ho H-T, Dicker I et al (2003) Biochemical and genetic characterizations of a novel human immunodeficiency virus type 1 inhibitor that blocks gp120-CD4 interactions. J Virol 77:10528–10536

    CAS  Google Scholar 

  40. Lin P-F, Blair W, Wang T et al (2003) A small molecule HIV-1 inhibitor that targets the HIV-1 envelope and inhibits CD4 receptor binding. Proc Natl Acad Sci USA 100:11013–11018

    Google Scholar 

  41. Ho H-T, Fan L, Nowicka-Sans B et al (2006) Envelope conformational changes induced by human immunodeficiency virus type 1 attachment inhibitors prevent CD4 binding and downstream entry events. J Virol 80:4017–4025

    CAS  Google Scholar 

  42. Meanwell NA, Wallace OB, Fang H et al (2009) Inhibitors of HIV-1 attachment. Part 2: an initial survey of indole substitution patterns. Bioorg Med Chem Lett 19:1977–1981

    CAS  Google Scholar 

  43. Meanwell NA, Wallace OB, Wang H et al (2009) Inhibitors of HIV-1 attachment. Part 3: a preliminary survey of the effect of structural variation of the benzamide moiety on antiviral activity. Bioorg Med Chem Lett 19:5136–5139

    CAS  Google Scholar 

  44. Wang T, Kadow JF, Zhang Z et al (2009) Inhibitors of HIV-1 attachment. Part 4: a study of the effect of piperazine substitution patterns on antiviral potency in the context of indole-based derivatives. Bioorg Med Chem Lett 19:5140–5145

    CAS  Google Scholar 

  45. Wang T, Yin Z, Zhang Z et al (2009) Inhibitors of human immunodeficiency virus type 1 (HIV-1) attachment. 5. An evolution from indole to azaindoles leading to the discovery of 1-(4-benzoylpiperazin-1-yl)-2-(4,7-dimethoxy-1H-pyrrolo[2,3-c]pyridin-3-yl)ethane-1,2-dione (BMS-488043), a drug candidate that demonstrates antiviral activity in HIV-1-infected subjects. J Med Chem 52:7778–7787

    CAS  Google Scholar 

  46. Wang T, Zhang Z, Wallace OB et al (2003) Discovery of 4-benzoyl-1-[(4-methoxy-1H- pyrrolo[2,3-b]pyridin-3-yl)oxoacetyl]-2-(R)-methylpiperazine (BMS-378806): a novel HIV-1 attachment inhibitor that interferes with CD4-gp120 interactions. J Med Chem 46:4236–4239

    CAS  Google Scholar 

  47. Yang Z, Zadjura L, D’Arienzo C et al (2005) Preclinical pharmacokinetics of a novel HIV-1 attachment inhibitor BMS-378806 and prediction of its human pharmacokinetics. Biopharm Drug Disp 26:387–402

    CAS  Google Scholar 

  48. Xue Y-J, Yan J-H, Arnold M et al (2007) Quantitative determination of BMS-378806 in human plasma and urine by high-performance liquid chromatography/tandem mass spectrometry. J Sep Sci 30:1267–1275

    CAS  Google Scholar 

  49. Yang Z, Zadjura LM, Marino AM et al (2010) Utilization of in vitro Caco-2 permeability and liver microsomal half-life screens in discovering BMS-488043, a novel HIV-1 attachment inhibitor with improved pharmacokinetic properties. J Pharm Sci 99:2135–2152

    CAS  Google Scholar 

  50. Hanna G, Lalezari J, Hellinger J et al (2004) Antiviral activity, safety, and tolerability of a novel, oral small-molecule HIV-1 attachment inhibitor, BMS-488043, in HIV-1 infected subjects. Abstract 141. 11th conference on retroviruses opportunistic infect, San Francisco, CA

    Google Scholar 

  51. Hanna GJ, Lalezari J, Hellinger JA et al (2011) Antiviral activity, pharmacokinetics, and safety of BMS-488043, a novel oral small-molecule HIV-1 attachment inhibitor, in HIV-1-infected subjects. Antimicrob Agents Chemother 55:722–728

    CAS  Google Scholar 

  52. Zhou N, Nowicka-Sans B, Zhang S et al (2011) In vivo patterns of resistance to the HIV attachment inhibitor BMS-488043. Antimicrob Agents Chemother 55:729–737

    CAS  Google Scholar 

  53. Si Z, Madani N, Cox JM et al (2004) Small-molecule inhibitors of HIV-1 entry block receptor-induced conformational changes in the viral envelope glycoproteins. Proc Natl Acad Sci USA 101:5036–5041

    CAS  Google Scholar 

  54. Madani N, Perdigoto AL, Srinivasan K et al (2004) Localized changes in the gp120 envelope glycoprotein confer resistance to human immunodeficiency virus entry inhibitors BMS-806 and #155. J Virol 78:3742–3752

    CAS  Google Scholar 

  55. Lin P-F, Ho HT, Gong YF et al (2004) Characterization of a small molecule HIV-1 attachment inhibitor BMS-488043: virology, resistance, and mechanism of action. Abstract 534. 11th Conference on retroviruses opportunistic infect, San Francisco, CA

    Google Scholar 

  56. Dahan A, Miller JM, Amidon GL (2009) Prediction of solubility and permeability class membership: provisional BCS classification of the world’s top oral drugs. AAPS J 11:740–746

    CAS  Google Scholar 

  57. Fakes MG, Vakkalagadda BJ, Qian F et al (2009) Enhancement of oral bioavailability of an HIV-attachment inhibitor by nanosizing and amorphous formulation approaches. Int J Pharm 370:167–174

    CAS  Google Scholar 

  58. Wang T, Ueda Y, Connolly TP et al (2010) Use of a phosphonoxymethyl prodrug approach to successfully improve the oral delivery of HIV-1 attachment inhibitors: design, preclinical profile, and human exposure. Abstract MEDI-346. 239th ACS national meeting, San Francisco, CA

    Google Scholar 

  59. Kadow JF, Ueda Y, Meanwell NA et al (2012) Inhibitors of human immunodeficiency virus type 1 (HIV-1) attachment 6. Preclinical and human pharmacokinetic profiling of BMS-663749, a phosphonooxymethyl prodrug of the HIV-1 attachment Inhibitor 2-(4-benzoyl-1-piperazinyl)-1-(4,7-dimethoxy-1H-pyrrolo[2,3-c]pyridin-3-yl)-2-oxoethanone (BMS-488043). J Med Chem 55:2048–2056

    Google Scholar 

  60. Nettles R, Schurmann D, Zhu L et al (2011) Pharmacodynamics, safety, and pharmacokinetics of BMS-663068, a potentially first in class oral HIV attachment inhibitor. Paper 49. 18th conference retroviruses opportunistic infections, Boston, MA

    Google Scholar 

  61. Nettles R, Schürmann D, Zhu L et al (2012) Pharmacodynamics, safety, and pharmacokinetics of BMS-663068, an oral HIV-1 attachment inhibitor in HIV-1-infected subjects. J Inf Dis (manuscript accepted)

    Google Scholar 

  62. Kadow JF, Ueda Y, Connolly TP et al (2011) Discovery of BMS-663068, an HIV attachment inhibitor for the treatment of HIV-1. Abstracts MEDI-29. 241st ACS national meeting, Anaheim, CA

    Google Scholar 

  63. Wang T. Inhibitors of Human Immunodeficiency Virus Type 1 (HIV-1) attachment. Part x. SAR of 4-Methoxy 6-Azaindole series of HIV gp120 entry inhibitors and discovery of BMS-626529 and its phosphonoxymethyl prodrug BMS-663068 (Manuscript in preparation)

    Google Scholar 

  64. Nowicka-Sans B, Gong Y-f, Ho H-T et al (2011) Antiviral activity of a new small molecule HIV-1 attachment inhibitor, BMS-626529, the parent of BMS-663068. Poster 518. 118th conference retroviruses opportunistic infections, Boston, MA

    Google Scholar 

  65. Nowicka-Sans B, Gong Y-F, McAuliffe B et al (2012) In vitro antiviral characteristics of HIV-1 attachment inhibitor BMS-626529, the active component of the prodrug BMS-663068 (Manuscript in preparation)

    Google Scholar 

  66. Yeung K-S, Browning MR, Colonno RJ et al (2010) Discovery of indole and azaindole-7-carboxamides as potent and orally bioavailable HIV attachment inhibitors. Abstract MEDI-12. 239th ACS national meeting, San Francisco, CA

    Google Scholar 

  67. Regueiro-Ren A, Xue QM, Ueda Y et al (2009) HIV-1 attachment inhibitors: structure-activity relationships leading to the identification of 1-(4-benzoylpiperazin-1-yl)-2-(4-fluoro-7-(1H-1,2,3-triazol-1-yl)-1H-pyrrolo[2,3-c]pyridin-3-yl)ethane-1,2-dione. Abstract MEDI-450. 238th ACS national meeting, Washington, DC

    Google Scholar 

  68. Regueiro-Ren A (2012) Inhibitors of Human Immunodeficiency Virus Type (HIV-1) attachment IX. Structure-activity relationships associated with 4-Fluoro-6-azaindole derivatives leading to the identification of 1-(4-Benzoyl-piperazin-1-yl)-2-(4-fluoro-7-[1,2,3]triazol-1-yl-1H-pyrrolo[2,3-c]pyridin-3-yl)-ethane-1,2-dione (BMS-585248) (Manuscript in preparation)

    Google Scholar 

  69. Brown JR, Toale H, Dennis AB et al (2010) Stable pharmaceutical composition for optimized delivery of an HIV attachment inhibitor. US Pat Appl Publ 20100056540A1

    Google Scholar 

  70. Zhou N, Fan L, Ho H-T et al (2010) Increased sensitivity of HIV variants selected by attachment inhibitors to broadly neutralizing antibodies. Virology 402:256–261

    CAS  Google Scholar 

  71. Zhang S, Alexander L, Wang T et al (2010) Protection against HIV-envelope-induced neuronal cell destruction by HIV attachment inhibitors. Arch Virol 155:777–781

    CAS  Google Scholar 

  72. Alexander L, Zhang S, McAuliffe B et al (2009) Inhibition of envelope-mediated CD4+−T-cell depletion by human immunodeficiency virus attachment inhibitors. Antimicrob Agents Chemother 53:4726–4732

    CAS  Google Scholar 

  73. Lu RJ, Tucker JA, Zinevitch T et al (2007) Design and synthesis of human immunodeficiency virus entry inhibitors: sulfonamide as an isostere for the α-ketoamide group. J Med Chem 50:6535–6544

    CAS  Google Scholar 

  74. Lu R-J, Tucker JA, Pickens J et al (2009) Heterobiaryl human immunodeficiency virus entry inhibitors. J Med Chem 52:4481–4487

    CAS  Google Scholar 

  75. Wang J, Le N, Heredia A et al (2005) Modification and structure-activity relationship of a small molecule HIV-1 inhibitor targeting the viral envelope glycoprotein gp120. Org Biomol Chem 3:1781–1786

    CAS  Google Scholar 

  76. Tran T-D, Adam FM, Calo F et al (2009) Design and optimization of potent gp120-CD4 inhibitors. Bioorg Med Chem Lett 19:5250–5255

    CAS  Google Scholar 

  77. Williams DH, Adam F, Fenwick DR et al (2009) Discovery of a small molecule inhibitor through interference with the gp120-CD4 interaction. Bioorg Med Chem Lett 19:5246–5249

    CAS  Google Scholar 

  78. Langdon G, Davis JD, McFadyen LM et al (2010) Translational pharmacokinetic-pharmacodynamic modelling; application to cardiovascular safety data for PF-00821385, a novel HIV agent. Br J Clin Pharmacol 69:336–345

    CAS  Google Scholar 

  79. Zhao QL, Ma S, Jiang H et al (2005) Identification of N-phenyl-N′-(2,2,6,6-tetramethyl-piperidin-4-yl)-oxalamides as a new class of HIV-1 entry inhibitors that prevent gp120 binding to CD4. Virology 339:213–225

    CAS  Google Scholar 

  80. Haim H, Si Z, Madani N et al (2009) Soluble CD4 and CD4-mimetic compounds inhibit HIV-1 infection by induction of a short-lived activated state. PLoS Pathog 5:e1000360

    Google Scholar 

  81. Madani N, Schoen A, Princiotto AM et al (2008) Small-molecule CD4 mimics interact with a highly conserved pocket on HIV-1 gp120. Structure 16:1689–1701

    CAS  Google Scholar 

  82. LaLonde JM, Elban MA, Courter JR et al (2011) Design, synthesis and biological evaluation of small molecule inhibitors of CD4-gp120 binding based on virtual screening. Bioorg Med Chem 19:91–101

    CAS  Google Scholar 

  83. Lai W, Huang L, Ho P et al (2008) Betulinic acid derivatives that target gp120 and inhibit multiple genetic subtypes of human immunodeficiency virus type 1. Antimicrob Agents Chemother 52:128–136

    CAS  Google Scholar 

  84. Hurevich M, Swed A, Joubran S et al (2010) Rational conversion of noncontinuous active region in proteins into a small orally bioavailable macrocyclic drug-like molecule: the HIV-1 CD4:gp120 paradigm. Bioorg Med Chem 18:5754–5761

    CAS  Google Scholar 

  85. Wild C, Oas T, McDanal C et al (1992) A synthetic peptide inhibitor of human immunodeficiency virus replication: correlation between solution structure and viral inhibition. Proc Natl Acad Sci USA 89:10537–10541

    CAS  Google Scholar 

  86. Jiang SB, Lin K, Strick N, Neurath AR (1993) HIV-1 inhibition by a peptide. Nature 365:113

    CAS  Google Scholar 

  87. Jiang SB, Lin K, Strick N, Neurath AR (1993) Inhibition of HIV-1 infection by a fusion domain binding peptide from the HIV-1 envelope glycoprotein gp41. Biochem Biophys Res Commun 195:533–538

    CAS  Google Scholar 

  88. Matthews T, Salgo M, Greenberg M et al (2004) Case history: Enfuvirtide: the first therapy to inhibit the entry of HIV-1 into host CD4 lymphocytes. Nat Rev Drug Disc 3:215–225

    CAS  Google Scholar 

  89. Cooper DA, Lange JMA (2004) Peptide inhibitors of virus-cell fusion: enfuvirtide as a case study in clinical discovery and development. Lancet Infect Dis 4:426–436

    CAS  Google Scholar 

  90. Eckert DM, Kim PS (2001) Mechanisms of viral membrane fusion and its inhibition. Annu Rev Biochem 70:777–810

    CAS  Google Scholar 

  91. Wild CT, Shugars DC, Greenwell TK et al (1994) Peptides corresponding to a predictive α-helical domain of human immunodeficiency virus type 1 gp41 are potent inhibitors of virus infection. Proc Natl Acad Sci USA 91:9770–9774

    CAS  Google Scholar 

  92. Wild C, Greenwell T, Shugars D et al (1995) The inhibitory activity of an HIV type 1 peptide correlates with its ability to interact with a leucine zipper structure. AIDS Res Hum Retrovir 11:323–325

    CAS  Google Scholar 

  93. Ketas TK, Klasse PJ, Spenlehauer C et al (2003) Entry inhibitors SCH-C, RANTES, and T-20 block HIV type 1 replication in multiple cell types. AIDS Res Hum Retrovir 19:177–186

    CAS  Google Scholar 

  94. Joly V, Jidar K, Tatay M, Yeni P (2010) Enfuvirtide: from basic investigations to current clinical use. Exp Opin Pharmacother 11:2701–2713

    CAS  Google Scholar 

  95. Bray BL (2003) Innovation: large-scale manufacture of peptide therapeutics by chemical synthesis. Nat Rev Drug Disc 2:587–593

    CAS  Google Scholar 

  96. Schneider SE, Bray BL, Mader CJ (2005) Development of HIV fusion inhibitors. J Pept Sci 11:744–753

    CAS  Google Scholar 

  97. Lalezari J, Henry K, O’Hearn M et al (2003) Enfuvirtide, an HIV-1 fusion inhibitor, for drug-resistant HIV infection in North and South America. New Engl J Med 348:2175–2185

    CAS  Google Scholar 

  98. Lazzarin A, Clotet B, Cooper D et al (2003) Efficacy of enfuvirtide in patients infected with drug-resistant HIV-1 in Europe and Australia. New Engl J Med 348:2186–2195

    CAS  Google Scholar 

  99. Oldfield V, Keating GM, Plosker G (2005) Enfuvirtide: a review of its use in the management of HIV infection. Drugs 65:1139–1160

    CAS  Google Scholar 

  100. Marr P, Walmsley S (2008) Reassessment of enfuvirtide’s role in the management of HIV-1 infection. Exp Opin Pharmacother 9:2349–2362

    CAS  Google Scholar 

  101. Manfredi R, Sabbatani S (2006) A novel antiretroviral class (fusion inhibitors) in the management of HIV infection. Present features and future perspectives of enfuvirtide (T-20). Curr Med Chem 13:2369–2384

    CAS  Google Scholar 

  102. Gochim M, Zhou G (2011) Amphipathic properties of HIV-1 gp41 fusion inhibitors. Curr Topics Med Chem 11:3022–3023

    Google Scholar 

  103. Lu M, Blacklow SC, Kim PS (1995) A trimeric structural domain of the HIV-1 transmembrane glycoprotein. Nat Struct Biol 2:1075–1082

    CAS  Google Scholar 

  104. Chan DC, Fass D, Berger JM, Kim PS (1997) Core structure of gp41 from the HIV envelope glycoprotein. Cell 89:263–273

    CAS  Google Scholar 

  105. Weissenhorn W, Dessen A, Harrison SC et al (1997) Atomic structure of the ectodomain from HIV-1 gp41. Nature 387:426–430

    CAS  Google Scholar 

  106. Tan K, Liu J-H, Wang J-H et al (1997) Atomic structure of a thermostable subdomain of HIV-1 gp41. Proc Natl Acad Sci USA 94:12303–12308

    CAS  Google Scholar 

  107. Chan DC, Chutkowski CT, Kim PS (1998) Evidence that a prominent cavity in the coiled coil of HIV type 1 gp41 is an attractive drug target. Proc Natl Acad Sci USA 95:15613–15617

    CAS  Google Scholar 

  108. Peisajovich SG, Shai Y (2002) New insights into the mechanism of virus-induced membrane fusion. Trends Biochem Sci 27:183–190

    CAS  Google Scholar 

  109. Torres O, Bong D (2011) Determinants of membrane activity from mutational analysis of the HIV fusion peptide. Biochemistry 50:5195–5207

    CAS  Google Scholar 

  110. Colman PM, Lawrence MC (2003) The structural biology of type I viral membrane fusion. Nat Rev Mol Cell Biol 4:309–319

    CAS  Google Scholar 

  111. Wexler-Cohen Y, Ashkenazi A, Viard M et al (2010) Virus-cell and cell-cell fusion mediated by the HIV-1 envelope glycoprotein is inhibited by short gp41 N-terminal membrane-anchored peptides lacking the critical pocket domain. FASEB J 24:4196–4202

    CAS  Google Scholar 

  112. Cai L, Jiang S (2010) Development of peptide and small-molecule HIV-1 fusion inhibitors that target gp41. ChemMedChem 5:1813–1824

    CAS  Google Scholar 

  113. Qadir MI, Malik SA (2010) HIV fusion inhibitors. Rev Med Virol 20:23–33

    CAS  Google Scholar 

  114. Chan DC, Kim PS (1998) HIV entry and its inhibition. Cell 93:681–684

    CAS  Google Scholar 

  115. Debnath AK (2006) Progress in identifying peptides and small-molecule inhibitors targeted to gp41 of HIV-1. Exp Opin Invest Drugs 15:465–478

    CAS  Google Scholar 

  116. Weng Y, Weiss CD (1998) Mutational analysis of residues in the coiled-coil domain of human immunodeficiency virus type 1 transmembrane protein gp41. J Virol 72:9676–9682

    CAS  Google Scholar 

  117. Eckert DM, Kim PS (2001) Design of potent inhibitors of HIV-1 entry from the gp41 N-peptide region. Proc Natl Acad Sci USA 98:11187–11192

    CAS  Google Scholar 

  118. Bianchi E, Finotto M, Ingallinella P et al (2005) Covalent stabilization of coiled coils of the HIV gp41 N region yields extremely potent and broad inhibitors of viral infection. Proc Natl Acad Sci USA 102:12903–12908

    CAS  Google Scholar 

  119. Izumi K, Watanabe K, Oishi S et al (2011) Potent anti-HIV-1 activity of N-HR-derived peptides including a deep pocket-forming region without antagonistic effects on T-20. Antiviral Chem Chemother 22:51–55

    CAS  Google Scholar 

  120. Chen X, Lu L, Zhi Q et al (2010) Novel recombinant engineered gp41 N-terminal heptad repeat trimers and their potential as anti-HIV-1 therapeutics and microbicides. J Biol Chem 285:25506–25515

    CAS  Google Scholar 

  121. Bewley CA, Loius JM, Ghirlando R, Clore GM (2002) Design of a novel peptide inhibitor of HIV fusion that disrupts the internal trimeric coiled-coil of gp41. J Biol Chem 277:14238–14245

    CAS  Google Scholar 

  122. Louis JM, Bewley CA, Clore GM (2001) Design and properties of NCCG-gp41, a chimeric gp41 molecule with nanomolar fusion inhibitory activity. J Biol Chem 276:29485–29489

    CAS  Google Scholar 

  123. Conway B (2000) T-1249, Trimeris Inc. Curr Opin Anti-Infect Invest Drugs 2:317–322

    CAS  Google Scholar 

  124. Eron JJ, Gulick RM, Bartlett JA et al (2004) Short-term safety and antiretroviral activity of T-1249, a second-generation fusion inhibitor of HIV. J Infect Dis 189:1075–1083

    CAS  Google Scholar 

  125. Lalezari JP, Bellos NC, Sathasivam K et al (2005) T-1249 retains potent antiretroviral activity in patients who had experienced virological failure while on an enfuvirtide-containing treatment regimen. J Infect Dis 191:1155–1163

    CAS  Google Scholar 

  126. Melby T, Demasi R, Cammack N et al (2007) Evolution of genotypic and phenotypic resistance during chronic treatment with the fusion inhibitor T-1249. AIDS Res Hum Retrovir 23:1366–1373

    CAS  Google Scholar 

  127. Chinnadurai R, Muench J, Kirchhoff F (2005) Effect of naturally-occurring gp41 HR1 variations on susceptibility of HIV-1 to fusion inhibitors. AIDS 19:1401–1405

    CAS  Google Scholar 

  128. He Y, Xiao Y, Song H et al (2008) Design and evaluation of sifuvirtide, a novel HIV-1 fusion inhibitor. J Biol Chem 283:11126–11134

    CAS  Google Scholar 

  129. Wang R-R, Yang L-M, Wang Y-H et al (2009) Sifuvirtide, a potent HIV fusion inhibitor peptide. Biochem Biophys Res Commun 382:540–544

    CAS  Google Scholar 

  130. Pan C, Lu H, Qi Z, Jiang S (2009) Synergistic efficacy of combination of enfuvirtide and sifuvirtide, the first- and next-generation HIV-fusion inhibitors. AIDS 23:639–641

    CAS  Google Scholar 

  131. Pan C, Cai L, Lu H et al (2009) Combinations of the first and next generations of human immunodeficiency virus (HIV) fusion inhibitors exhibit a highly potent synergistic effect against enfuvirtide-sensitive and -resistant HIV type 1 strains. J Virol 83:7862–7872

    CAS  Google Scholar 

  132. Covens K, Megens S, Dekeersmaeker N et al (2010) The rare HIV-1 gp41 mutations 43T and 50V elevate enfuvirtide resistance levels of common enfuvirtide resistance mutations that did not impact susceptibility to sifuvirtide. Antiviral Res 86:253–260

    CAS  Google Scholar 

  133. Canto AMT Martins do, Carvalho AJP, Ramalho JPP, Loura LMS (2008) T-20 and T-1249 HIV fusion inhibitors’ structure and conformation in solution: a molecular dynamics study. J Peptide Sci 14:442–447

    Google Scholar 

  134. Veiga AS, Santos NC, Loura LMS et al (2004) HIV fusion inhibitor peptide T-1249 is able to insert or adsorb to lipidic bilayers. Putative correlation with improved efficiency. J Am Chem Soc 126:14758–14763

    CAS  Google Scholar 

  135. Yao X, Chong H, Zhang C et al (2012) Broad antiviral activity and crystal structure of HIV-1 fusion inhibitor sifuvirtide. J Biol Chem 287:6788–6796

    CAS  Google Scholar 

  136. Liu Z, Shan M, Li L et al (2011) In vitro selection and characterization of HIV-1 variants with increased resistance to sifuvirtide, a novel HIV-1 fusion inhibitor. J Biol Chem 286:3277–3287

    CAS  Google Scholar 

  137. Dwyer JJ, Wilson KL, Davison DK et al (2007) Design of helical, oligomeric HIV-1 fusion inhibitor peptides with potent activity against enfuvirtide-resistant virus. Proc Natl Acad Sci USA 104:12772–12777

    CAS  Google Scholar 

  138. He Y, Cheng J, Lu H et al (2008) Potent HIV fusion inhibitors against enfuvirtide-resistant HIV-1 strains. Proc Natl Acad Sci USA 105:16332–16337

    Google Scholar 

  139. Nishikawa H, Nakamura S, Kodama E et al (2009) Electrostatically constrained α-helical peptide inhibits replication of HIV-1 resistant to enfuvirtide. Int J Biochem Cell Biol 41:891–899

    CAS  Google Scholar 

  140. Naito T, Izumi K, Kodama E et al (2009) SC29EK, a peptide fusion inhibitor with enhanced α -helicity, inhibits replication of human immunodeficiency virus type 1 mutants resistant to enfuvirtide. Antimicrob Agents Chemother 53:1013–1018

    CAS  Google Scholar 

  141. Shimura K, Nameki D, Kajiwara K et al (2010) Resistance profiles of novel electrostatically constrained HIV-1 fusion inhibitors. J Biol Chem 285:39471–39480

    CAS  Google Scholar 

  142. Eggink D, Langedijk JPM, Bonvin AMJJ et al (2009) Detailed mechanistic insights into HIV-1 sensitivity to three generations of fusion inhibitors. J Biol Chem 284:26941–26950

    CAS  Google Scholar 

  143. Oishi S, Ito S, Nishikawa K et al (2008) Design of a novel HIV-1 fusion inhibitor that displays a minimal interface for binding affinity. J Med Chem 51:388–391

    CAS  Google Scholar 

  144. Lee-Huang S, Maiorov V, Huang PL et al (2005) Structural and functional modeling of human lysozyme reveals a unique nonapeptide, HL9, with anti-HIV activity. Biochemistry 44:4648–4655

    CAS  Google Scholar 

  145. Hartono YD, Lee AN, Lee-Huang S, Zhang D (2011) Computational study of bindings of HL9, a nonapeptide fragment of human lysozyme, to HIV-1 fusion protein gp41. Bioorg Med Chem Lett 21:1607–1611

    CAS  Google Scholar 

  146. Gonzalez R, Albericio F, Cascone O, Iannucci NB (2010) Improved antimicrobial activity of h-lysozyme (107–115) by rational Ala substitution. J Peptide Sci 16:424–429

    CAS  Google Scholar 

  147. Blackwell HE, Grubbs RH (1998) Highly efficient synthesis of covalently cross-linked peptide helices by ring-closing metathesis. Angew Chem Int Ed Engl 37:3281–3284

    CAS  Google Scholar 

  148. Schafmeister CE, Po J, Verdine GL (2000) An all-hydrocarbon cross-linking system for enhancing the helicity and metabolic stability of peptides. J Am Chem Soc 122:5891–5892

    CAS  Google Scholar 

  149. Blackwell HE, Sadowsky JD, Howard RJ et al (2001) Ring-closing metathesis of olefinic peptides: design, synthesis, and structural characterization of macrocyclic helical peptides. J Org Chem 66:5291–5302

    CAS  Google Scholar 

  150. Kim Y-W, Grossmann TN, Verdine GL (2011) Synthesis of all-hydrocarbon stapled α-helical peptides by ring-closing olefin metathesis. Nat Protocol 6:761–771

    CAS  Google Scholar 

  151. Jacobsen O, Maekawa H, Ge N-H et al (2011) Stapling of a 310-helix with click chemistry. J Org Chem 76:1228–1238

    CAS  Google Scholar 

  152. Cantel S, Le Chevalier IA, Scrima M et al (2008) Synthesis and conformational analysis of a cyclic peptide obtained via i to i + 4 intramolecular side-chain to side-chain azide-alkyne 1,3-dipolar cycloaddition. J Org Chem 73:5663–5674

    CAS  Google Scholar 

  153. Scrima M, Le Chevalier-Isaad A, Rovero P et al (2010) CuI-catalyzed azide-alkyne intramolecular i-to-(i + 4) side-chain-to-side-chain cyclization promotes the formation of helix-like secondary structures. Eur J Org Chem 2010:446–457

    Google Scholar 

  154. Bird GH, Madani N, Perry AF et al (2010) Hydrocarbon double-stapling remedies the proteolytic instability of a lengthy peptide therapeutic. Proc Natl Acad Sci USA 107:14093–14098

    CAS  Google Scholar 

  155. Eckert DM, Malashkevich VN, Hong LH et al (1999) Inhibiting HIV-1 entry: discovery of D-peptide inhibitors that target the gp41 coiled-coil pocket. Cell 99:103–115

    CAS  Google Scholar 

  156. Welch BD, VanDemark AP, Heroux A et al (2007) Potent D-peptide inhibitors of HIV-1 entry. Proc Natl Acad Sci USA 104:16828–16833

    CAS  Google Scholar 

  157. Welch BD, Francis JN, Redman JS et al (2010) Design of a potent D-peptide HIV-1 entry inhibitor with a strong barrier to resistance. J Virol 84:11235–11244

    CAS  Google Scholar 

  158. Xie D, Yao C, Wang L et al (2010) An albumin-conjugated peptide exhibits potent anti-HIV activity and long in vivo half-life. Antimicrob Agents Chemother 54:191–196

    CAS  Google Scholar 

  159. Stoddart CA, Nault G, Galkina SA et al (2008) Albumin-conjugated C34 peptide HIV-1 fusion inhibitor: equipotent to C34 and T −20 in vitro with sustained activity in SCID-hu Thy/Liv mice. J Biol Chem 283:34045–34052

    CAS  Google Scholar 

  160. Stoddart CA, Nault G, Galkina SA et al (2012) Preexposure prophylaxis with albumin-conjugated C34 peptide HIV-1 fusion inhibitor in SCID-hu Thy/Liv mice. Antimicrob Agents Chemother. doi:10.1128AAC.05015-11

  161. Zhang H, Schneider SE, Bray BL et al (2008) Process evelopment of TRI-999, a fatty-acid-modified HIV fusion inhibitory peptide. Org Proc Res Develop 12:101–110

    Google Scholar 

  162. Ingallinella P, Bianchi E, Ladwa NA et al (2009) Addition of a cholesterol group to an HIV-1 peptide fusion inhibitor dramatically increases its antiviral potency. Proc Natl Acad Sci USA 106:5801–5806

    CAS  Google Scholar 

  163. Peisajovich SG, Gallo SA, Blumenthal R, Shai Y (2003) C-terminal octylation rescues an inactive T-20 mutant: Implications for the mechanism of HIV/simian immunodeficiency virus-induced membrane fusion. J Biol Chem 278:21012–21017

    CAS  Google Scholar 

  164. Champagne K, Shishido A, Root MJ (2009) Interactions of HIV-1 inhibitory peptide T20 with the gp41 NH-R coiled coil. J Biol Chem 284:3619–3627

    CAS  Google Scholar 

  165. Liu S, Jing W, Cheung B et al (2007) HIV gp41 C-terminal heptad repeat contains multifunctional domains. Relation to mechanisms of action of anti-HIV peptides. J Biol Chem 282:9612–9620

    CAS  Google Scholar 

  166. Debnath AK (2006) Prospects and strategies for the discovery and development of small-molecule inhibitors of six-helix bundle formation in class 1 viral fusion proteins. Curr Opin Invest Drugs 7:118–127

    CAS  Google Scholar 

  167. Meanwell NA, Krystal M (2007) Respiratory syncytial virus – the discovery and optimization of orally bioavailable fusion inhibitors. Drugs Future 32:441–455

    CAS  Google Scholar 

  168. Douglas JL, Panis ML, Ho E et al (2003) Inhibition of respiratory syncytial virus fusion by the small molecule VP-14637 via specific interactions with F protein. J Virol 77:5054–5064

    CAS  Google Scholar 

  169. Douglas JL, Panis ML et al (2005) Small molecules VP-14637 and JNJ-2408068 inhibit respiratory syncytial virus fusion by similar mechanisms. Antimicrob Agents Chemother 49:2460–2466

    CAS  Google Scholar 

  170. Cianci C, Langley DR et al (2004) Targeting a binding pocket within the trimer-of-hairpins: small-molecule inhibition of viral fusion. Proc Natl Acad Sci USA 101:15046–15051

    CAS  Google Scholar 

  171. Roymans D, De Bondt HL et al (2010) Binding of a potent small-molecule inhibitor of six-helix bundle formation requires interactions with both heptad-repeats of the RSV fusion protein. Proc Natl Acad Sci USA 107:308–313

    CAS  Google Scholar 

  172. Frey G, Rits-Volloch S, Zhang X-Q et al (2006) Small molecules that bind the inner core of gp41 and inhibit HIV envelope-mediated fusion. Proc Natl Acad Sci USA 103:13938–13943

    CAS  Google Scholar 

  173. Debnath AK, Radigan L, Jiang S (1999) Structure-based identification of small molecule antiviral compounds targeted to the gp41 core structure of the human immunodeficiency virus type 1. J Med Chem 42:3203–3209

    CAS  Google Scholar 

  174. Naicker KP, Jiang S, Lu H et al (2004) Synthesis and anti-HIV-1 activity of 4-[4-(4,6-bisphenylamino-triazin-2-ylamino)-5-methoxy-2-methylphenylazo]-5-hydroxynaphthalene-2,7-disulfonic acid and its derivatives. Bioorg Med Chem 12:1215–1220

    CAS  Google Scholar 

  175. Wang H, Qi Z, Guo A et al (2009) ADS-J1 inhibits human immunodeficiency virus type 1 entry by interacting with the gp41 pocket region and blocking fusion-active gp41 core formation. Antimicrob Agents Chemother 53:4987–4998

    CAS  Google Scholar 

  176. Cai L, Gochin M (2007) A novel fluorescence intensity screening assay identifies new low-molecular-weight inhibitors of the gp41 coiled-coil domain of human immunodeficiency virus type 1. Antimicrob Agents Chemother 51:2388–2395

    CAS  Google Scholar 

  177. Armand-Ugon M, Clotet-Codina I, Tintori C et al (2005) The anti-HIV activity of ADS- J1 targets the HIV-1 gp120. Virology 343:141–149

    CAS  Google Scholar 

  178. Gonzalez-Ortega E, Mena M-P, Permanyer M et al (2010) ADS- J1 inhibits HIV-1 entry by interacting with gp120 and does not block fusion-active gp41 core formation. Antimicrob Agents Chemother 54:4487–4492

    CAS  Google Scholar 

  179. Jiang S, Lu H, Liu S et al (2004) N-substituted pyrrole derivatives as novel human immunodeficiency virus type 1 entry inhibitors that interfere with the gp41 six-helix bundle formation and block virus fusion. Antimicrob Agents Chemother 48:4349–4359

    CAS  Google Scholar 

  180. Liu K, Lu H, Hou L et al (2008) Design, synthesis, and biological evaluation of n-carboxyphenylpyrrole derivatives as potent HIV fusion inhibitors targeting gp41. J Med Chem 51:7843–7854

    CAS  Google Scholar 

  181. Wang Y, Lu H, Zhu Q, Jiang S, Liao Y (2010) Structure-based design, synthesis and biological evaluation of new N-carboxyphenylpyrrole derivatives as HIV fusion inhibitors targeting gp41. Bioorg Med Chem Lett 20:189–192

    Google Scholar 

  182. Jiang S, Tala SR, Lu H et al (2011) Design, synthesis, and biological activity of a novel series of 2,5-disubstituted furans/pyrroles as HIV-1 fusion inhibitors targeting gp41. Bioorg Med Chem Lett 21:6895–6898

    CAS  Google Scholar 

  183. Jiang S, Tala SR, Lu H et al (2011) Design, synthesis, and biological activity of novel 5-((arylfuran/1H-pyrrol-2-yl)methylene)-2-thioxo-3-(3-(trifluoromethyl)phenyl)thiazolidin-4-ones as HIV-1 fusion inhibitors targeting gp41. J Med Chem 54:572–579

    CAS  Google Scholar 

  184. He X-Y, Zou P, Qiu J et al (2011) Design, synthesis and biological evaluation of 3-substituted 2,5-dimethyl-N-(3-(1H-tetrazol-5-yl)phenyl)pyrroles as novel potential HIV-1 gp41 inhibitors. Bioorg Med Chem 19:6726–6734

    CAS  Google Scholar 

  185. Ernst JT, Kutzki O, Debnath AK et al (2002) Design of a protein surface antagonist based on α-helix mimicry: inhibition of gp41 assembly and viral fusion. Angew Chem Int Ed Engl 41:278–281

    CAS  Google Scholar 

  186. Garner J, Harding MM (2007) Design and synthesis of α-helical peptides and mimetics. Org Biomol Chem 5:3577–3585

    CAS  Google Scholar 

  187. Liu B, Joseph RW, Dorsey BD et al (2009) Structure-based design of substituted biphenyl ethylene ethers as ligands binding in the hydrophobic pocket of gp41 and blocking the helical bundle formation. Bioorg Med Chem Lett 15:5693–5697

    Google Scholar 

  188. Xu Y, Lu H, Kennedy JP et al (2006) Evaluation of “credit card” libraries for inhibition of HIV-1 gp41 fusogenic core formation. J Comb Chem 8:531–539

    CAS  Google Scholar 

  189. Stewart KD, Huth JR, Ng TI et al (2010) Non-peptide entry inhibitors of HIV-1 that target the gp41 coiled coil pocket. Bioorg Med Chem Lett 20:612–617

    CAS  Google Scholar 

  190. Balogh E, Wu D, Zhou G, Gochin M (2009) NMR second site screening for structure determination of ligands bound in the hydrophobic pocket of HIV-1 gp41. J Am Chem Soc 131:2821–2823

    CAS  Google Scholar 

  191. Zhou G, Wu D, Hermel E et al (2010) Design, synthesis, and evaluation of indole compounds as novel inhibitors targeting gp41. Bioorg Med Chem Lett 20:1500–1503

    CAS  Google Scholar 

  192. Zhou G, Wu D, Snyder B et al (2011) Development of indole compounds as small molecule fusion inhibitors targeting HIV-1 glycoprotein-41. J Med Chem 54:7220–7231

    CAS  Google Scholar 

  193. Gochin M, Zhou G-Y, Phillips AH (2011) Paramagnetic relaxation assisted docking of a small indole compound in the HIV-1 gp41 hydrophobic pocket. ACS Chem Biol 6:267–274

    CAS  Google Scholar 

  194. Gochin M, Cai L (2009) The role of amphiphilicity and negative charge in glycoprotein 41 interactions in the hydrophobic pocket. J Med Chem 52:4338–4344

    CAS  Google Scholar 

  195. Wang E, Sun X, Qian Y et al (2003) Both heptad repeats of human respiratory syncytial virus fusion protein are potent inhibitors of viral fusion. Biochem Biophys Res Commun 302:469–475

    CAS  Google Scholar 

  196. LaFemina RL, Schneider CL, Robbins HL et al (1992) Requirement of active human immunodeficiency virus type 1 integrase enzyme for productive infection of human T-lymphoid cells. J Virol 66:7414–7419

    CAS  Google Scholar 

  197. Cherepanov P, Maertens G, Proost P et al (2003) HIV-1 integrase forms stable tetramers and associates with LEDGF/p75 protein in human cells. J Biol Chem 278:372–381

    CAS  Google Scholar 

  198. Turlure F, Devroe E, Silver PA et al (2004) Human cell proteins and human immunodeficiency virus DNA integration. Front Biosci 9:3187–3208

    CAS  Google Scholar 

  199. Emiliani S, Mousnier A, Busschots K et al (2005) Integrase mutants defective for interaction with LEDGF/p75 are impaired in chromosome tethering and HIV-1 replication. J Biol Chem 280:25517–25523

    CAS  Google Scholar 

  200. Ge H, Si Y, Roeder RG (1998) Isolation of cDNAs encoding novel transcription coactivators p52 and p75 reveals an alternate regulatory mechanism of transcriptional activation. EMBO J 17:6723–6729

    CAS  Google Scholar 

  201. Llano M, Morrison J, Poeschla EM (2009) Virological and cellular roles of the transcriptional coactivator LEDGF/p75. In: Spearman P, Freed EO (eds) HIV interactions with host cell proteins, vol 339, Current topics in microbiology and immunology. Springer, Heidelberg

    Google Scholar 

  202. Llano M, Saenz DT, Meehan A et al (2006) An essential role for LEDGF/p75 in HIV integration. Science 314:461–464

    CAS  Google Scholar 

  203. Vandekerckhove L, Christ F, Van Maele B et al (2006) Transient and stable knockdown of the integrase cofactor LEDGF/p75 reveals its role in the replication cycle of human immunodeficiency virus. J Virol 80:1886–1896

    CAS  Google Scholar 

  204. Shun M-C, Raghavendra NK, Vandegraaff N et al (2007) LEDGF/p75 functions downstream from preintegration complex formation to effect gene-specific HIV-1 integration. Genes Dev 21:1767–1778

    CAS  Google Scholar 

  205. Maertens G, Cherepanov P, Pluymers W et al (2003) LEDGF/p75 is essential for nuclear and chromosomal targeting of HIV-1 integrase in human cells. J Biol Chem 278:33528–33539

    CAS  Google Scholar 

  206. Ciuffi A, Llano M, Poeschla E et al (2005) A role for LEDGF/p75 in targeting HIV DNA integration. Nat Med 11:1287–1289

    CAS  Google Scholar 

  207. Cherepanov P, Devroe E, Silver PA, Engelman A (2004) Identification of an evolutionarily conserved domain in human lens epithelium-derived growth factor/transcriptional co-activator p75 (LEDGF/p75) that binds HIV-1 integrase. J Biol Chem 279:48883–48892

    CAS  Google Scholar 

  208. Vanegas M, Llano M, Delgado S et al (2005) Identification of the LEDGF/p75 HIV-1 integrase-interaction domain and NLS reveals NLS-independent chromatin tethering. J Cell Sci 118:1733–1743

    CAS  Google Scholar 

  209. Cherepanov P, Sun ZY, Rahman S et al (2005) Solution structure of the HIV-1 integrase-binding domain in LEDGF/p75. Nat Struct Mol Biol 12:526–532

    CAS  Google Scholar 

  210. Busschots K, Voet A, De Maeyer M et al (2007) Identification of the LEDGF/p75 binding site in HIV-1 integrase. J Mol Biol 365:1480–1492

    CAS  Google Scholar 

  211. Rahman S, Lu R, Vandegraaff N et al (2007) Structure-based mutagenesis of the integrase-LEDGF/p75 interface uncouples a strict correlation between in vitro protein binding and HIV-1 fitness. Virology 357:79–90

    CAS  Google Scholar 

  212. Cherepanov P, Ambrosio AL, Rahman S et al (2005) Structural basis for the recognition between HIV-1 integrase and transcriptional coactivator p75. Proc Natl Acad Sci USA 102:17308–17313

    CAS  Google Scholar 

  213. Hare S, Shun MC, Gupta SS et al (2009) A novel co-crystal structure affords the design of gain-of-function lentiviral integrase mutants in the presence of modified PSIP1/LEDGF/p75. PLoS Pathog 5:e1000259

    Google Scholar 

  214. Hare S, Di Nunzio F, Labeja A et al (2009) Structural basis for functional tetramerization of lentiviral integrase. PLoS Pathog 5:e1000515

    Google Scholar 

  215. De Rijck J, Vandekerckhove L, Gijsbers R et al (2006) Overexpression of the lens epithelium-derived growth factor/p75 integrase binding domain inhibits human immunodeficiency virus replication. J Virol 80:11498–11509

    Google Scholar 

  216. Molteni V, Greenwald J, Rhodes D et al (2001) Identification of a small-molecule binding site at the dimer interface of the HIV integrase catalytic domain. Acta Cryst Sect D 57:536–544

    CAS  Google Scholar 

  217. Al-Mawsawi LQ, Fikkert V, Dayam R et al (2006) Discovery of a small-molecule HIV-1 integrase inhibitor-binding site. Proc Nat Acad Sci USA 103:10080–10085

    CAS  Google Scholar 

  218. Christ F, Voet A, Marchand A et al (2010) Rational design of small-molecule inhibitors of the LEDGF/p75-integrase interaction and HIV replication. Nat Chem Biol 6:442–448

    CAS  Google Scholar 

  219. Compound (27) had been previously disclosed as an HIV antiviral agent. (2007) WO 2007131350

    Google Scholar 

  220. Altman MD, Ali A, Reddy GSKK et al (2008) HIV-1 protease inhibitors from inverse design in the substrate envelope exhibit subnanomolar binding to drug-resistant variants. J Am Chem Soc 130:6099–6113

    CAS  Google Scholar 

  221. Du L, Zhao Y, Chen J et al (2008) D77, one benzoic acid derivative, functions as a novel anti-HIV-1 inhibitor targeting the interaction between integrase and cellular LEDGF/p75. Biochem Biophys Res Commun 375:139–144

    CAS  Google Scholar 

  222. De Luca L, Barreca ML, Ferro S et al (2009) Pharmacophore-based discovery of small-molecule inhibitors of protein-protein interactions between HIV-1 integrase and cellular cofactor LEDGF/p75. ChemMedChem 4:1311–1316

    Google Scholar 

  223. De Luca L, Ferro S, Gitto R et al (2010) Small molecules targeting the interaction between HIV-1 integrase and LEDGF/p75 cofactor. Bioorg Med Chem 18:7515–7521

    Google Scholar 

  224. Barreca ML, Ferro S, Rao A et al (2005) Pharmacophore-based design of HIV-1 integrase strand-transfer inhibitors. J Med Chem 48:7084–7088

    CAS  Google Scholar 

  225. De Luca L, Gitto R, Christ F et al (2011) 4-[1-(4-Fluorobenzyl)-4-hydroxy-1H-indol-3-yl]-2-hydroxy-4-oxobut-2-enoic acid as a prototype to develop dual inhibitors of HIV-1 integration process. Antiviral Res 92:102–107

    Google Scholar 

  226. Zhao XZ, Semenova EA, Vu BC et al (2008) 2,3-Dihydro-6,7-dihydroxy-1H-isoindol-1-one-based HIV-1 integrase inhibitors. J Med Chem 51:251–252

    CAS  Google Scholar 

  227. Todd MJ, Semo M, Freire E (1998) The structural stability of the HIV-1 protease. J Mol Biol 283:475–488

    CAS  Google Scholar 

  228. Ishima R, Ghirlando R, Tözsér J et al (2001) Folded monomer of HIV-1 protease. J Biol Chem 276:49110–49116

    CAS  Google Scholar 

  229. Zhang Z-Y, Poorman RA, Maggiora LL et al (1991) Dissociative inhibition of dimeric enzymes. Kinetic characterization of the inhibition of HIV-1 protease by its COOH-terminal tetrapeptide. J Biol Chem 266:15591–15594

    CAS  Google Scholar 

  230. Bannwarth L, Reboud-Ravaux M (2007) An alternative strategy for inhibiting multidrug-resistant mutants of the dimeric HIV-1 protease by targeting the subunit interface. Biochem Soc Trans 35:551–554

    CAS  Google Scholar 

  231. Camarasa M-J, Velázquez S, San-Félix A et al (2006) Dimerization inhibitors of HIV-1 reverse transcriptase, protease and integrase: a single mode of inhibition for the three HIV enzymes? Antiviral Res 71:260–267

    CAS  Google Scholar 

  232. Berg T (2003) Modulation of protein-protein interactions with small organic molecules. Angew Chem Int Ed Engl 42:2462–2481

    CAS  Google Scholar 

  233. Bowman MJ, Chmielewski J (2002) Novel strategies for targeting the dimerization interface of HIV protease with cross-linked interfacial pep-tides. Biopolym Pept Sci 66:126–133

    CAS  Google Scholar 

  234. Shultz MD, Bowman MJ, Ham Y-W et al (2000) Small-molecule inhibitors of HIV-1 protease dimerization derived from cross-linked interfacial peptides. Angew Chem Int Ed Engl 39:2710–2713

    CAS  Google Scholar 

  235. Hwang YS, Chmielewski J (2005) Development of low molecular weight hiv-1 protease dimerization inhibitors. J Med Chem 48:2239–2242

    CAS  Google Scholar 

  236. Bowman MJ, Byrne S, Chmielewski J (2005) Switching between allosteric and dimerization inhibition of HIV-1 protease. Chem Biol 12:439–444

    CAS  Google Scholar 

  237. Bowman MJ, Chmielewski J (2009) Sidechain-linked inhibitors of HIV-1 protease dimerization. Bioorg Med Chem 17:967–976

    CAS  Google Scholar 

  238. Shultz MD, Ham Y-W, Lee S-G et al (2004) Small-molecule dimerization inhibitors of wild-type and mutant HIV pro-tease: a focused library approach. J Am Chem Soc 126:9886–9887

    CAS  Google Scholar 

  239. Lee S-G, Chmielewski J (2006) Rapid synthesis and in situ screening of potent HIV-1 protease dimerization inhibitors. Chem Biol 13:421–426

    CAS  Google Scholar 

  240. Bowman MJ, Chmielewski J (2004) Crucial amides for dimerization inhibitors of HIV-1 protease. Bioorg Med Chem Lett 14:1395–1398

    CAS  Google Scholar 

  241. Lee S-G, Chmielewski J (2010) Cross-linked peptoid-based dimerization inhibitors of HIV-1 protease. Chembiochem 11:1513–1516

    CAS  Google Scholar 

  242. Bouras A, Boggetto N, Benatalah Z et al (1999) Design, synthesis, and evaluation of conformationally constrained tongs, new inhibitors of hiv-1 protease dimerization. J Med Chem 42:957–962

    CAS  Google Scholar 

  243. Merabet N, Dumond J, Collinet B et al (2004) New constrained “molecular tongs” designed to dissociate HIV-1 protease dimer. J Med Chem 47:6392–6400

    CAS  Google Scholar 

  244. Bannwarth L, Kessler A, Pèthe S et al (2006) Molecular tongs containing amino acid mimetic fragments: new inhibitors of wild-type and mutated HIV-1 protease dimerization. J Med Chem 49:4657–4664

    CAS  Google Scholar 

  245. Vidu A, Dufau L, Bannwarth L et al (2010) Toward the first nonpeptidic molecular tong inhibitor of wild-type and mutated HIV-1 protease dimerization. ChemMedChem 5:1899–1906

    CAS  Google Scholar 

  246. Koh Y, Matsumi S, Das D et al (2007) Potent inhibition of HIV-1 replication by novel non-peptidyl small molecule inhibitors of protease dimerization. J Biol Chem 282:28709–28720

    CAS  Google Scholar 

  247. Tojo Y, Koh Y, Amano M et al (2010) Novel protease inhibitors (PIs) containing macrocyclic components and 3(R),3a(S),6a(R)-bis-tetrahydrofuranylurethane that are potent against multi-PI-resistant HIV-1 variants in vitro. Antimicrob Agents Chemother 54:3460–3470

    CAS  Google Scholar 

  248. Ghosh AK, Xu C-X, Rao KV et al (2010) Probing multidrug-resistance and protein-ligand interactions with oxatricyclic designed ligands in HIV-1 protease inhibitors. ChemMedChem 5:1850–1854

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John F. Kadow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kadow, J.F., Langley, D.R., Meanwell, N.A., Pracitto, R., Walker, M.A., Yeung, KS. (2012). Protein-Protein Interaction Targets to Inhibit HIV-1 Infection. In: Wendt, M. (eds) Protein-Protein Interactions. Topics in Medicinal Chemistry, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28965-1_4

Download citation

Publish with us

Policies and ethics