Skip to main content

An Objective Based Classification of Aggregation Techniques for Wireless Sensor Networks

  • Conference paper
Emerging Trends and Applications in Information Communication Technologies (IMTIC 2012)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 281))

Included in the following conference series:

Abstract

Wireless Sensor Networks have gained immense popularity in recent years due to their ever increasing capabilities and wide range of critical applications. A huge body of research efforts has been dedicated to find ways to utilize limited resources of these sensor nodes in an efficient manner. One of the common ways to minimize energy consumption has been aggregation of input data. We note that every aggregation technique has an improvement objective to achieve with respect to the output it produces. Each technique is designed to achieve some target e.g. reduce data size, minimize transmission energy, enhance accuracy etc. This paper presents a comprehensive survey of aggregation techniques that can be used in distributed manner to improve lifetime and energy conservation of wireless sensor networks. Main contribution of this work is proposal of a novel classification of such techniques based on the type of improvement they offer when applied to WSNs. Due to the existence of a myriad of definitions of aggregation, we first review the meaning of term aggregation that can be applied to WSN. The concept is then associated with the proposed classes. Each class of techniques is divided into a number of subclasses and a brief literature review of related work in WSN for each of these is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Van Renesse, R.: The importance of aggregation. In: Dignum, F.P.M., Cortés, U. (eds.) AMEC 2000. LNCS (LNAI), vol. 2584, pp. 87–92. Springer, Heidelberg (2001)

    Google Scholar 

  2. Kalpakis, K., Dasgupta, K., Namjoshi, P.: Efficient algorithms for maximum lifetime data gathering and aggregation in wireless sensor networks. Computer Networks 42(6), 697–716 (2003)

    Article  MATH  Google Scholar 

  3. Hall, D.L., Llinas, J.: An introduction to multisensor data fusion. Proceedings of the IEEE 85(1), 6–23 (1997)

    Article  Google Scholar 

  4. Wald, L.: Some terms of reference in data fusion. IEEE Transactions on Geoscience and Remote Sensing 37(3), 1190–1193 (1999)

    Article  Google Scholar 

  5. Dasarathy, B.V.: Information fusion-what, where, why, when, and how? Information Fusion 2(2), 75–76 (2001)

    Article  Google Scholar 

  6. Krishnamachari, L., Estrin, D., Wicker, S.: The impact of data aggregation in wireless sensor networks. In: Proceedings of 22nd Intl. Conf. on Distributed Computing Systems Workshops. IEEE (2002)

    Google Scholar 

  7. Rajagopalan, R., Varshney, P.K.: Data-aggregation techniques in sensor networks: a survey. IEEE Communication Surveys & Tutorials 8(4), 48–63 (2006)

    Article  Google Scholar 

  8. Laukik Chitnis, A.D., Ranka, S.: Aggregation Methods for Large Scale Sensor Networks. ACM (2006)

    Google Scholar 

  9. Fasolo, E., et al.: In-network aggregation techniques for wireless sensor networks: a survey. IEEE Wireless Comm. 14(2), 70–87 (2007)

    Article  Google Scholar 

  10. Nakamura, E.F., Loureiro, A.A.F., Frery, A.C.: Information fusion for wireless sensor networks: Methods, models, and classifications. ACM Computing Surveys (CSUR) 39(3), 9-es (2007)

    Article  Google Scholar 

  11. Intanagonwiwat, C., et al.: Directed diffusion for wireless sensor networking. IEEE/ACM Transactions on Networking 11(1), 2–16 (2003)

    Article  Google Scholar 

  12. Madden, S., et al.: Tag: a tiny aggregation service for ad-hoc sensor networks. ACM SIGOPS Operating Systems Review 36(SI), 131–146 (2002)

    Article  Google Scholar 

  13. Yao, Y., Gehrke, J.: The cougar approach to in-network query processing in sensor networks. SIGMOD Record 31(3), 9–18 (2002)

    Article  Google Scholar 

  14. Vivek Mhatre, C.R.: Design guidelines for wireless sensor networks: communication, clustering and aggregation. Ad Hoc Networks Journal 02, 45–63 (2004)

    Article  Google Scholar 

  15. Ammar, K., Nascimento, M.A.: Histogram and Other Aggregate Queries in Wireless Sensor Networks, 2011, Dept. of Computing Science. University of Alberta. Canada, TR-11-03 (February 2011)

    Google Scholar 

  16. Hellerstein, J., et al.: Beyond average: Toward sophisticated sensing with queries. Springer, Heidelberg (2003)

    Google Scholar 

  17. Manjhi, A., Nath, S., Gibbons, P.B.: Tributaries and deltas: efficient and robust aggregation in sensor network streams. In: Proc. of the ACM SIGMOD International Conference on Management of Data. ACM (2005)

    Google Scholar 

  18. Khedo, K., Doomun, R., Aucharuz, S.: READA: Redundancy Elimination for Accurate Data Aggregation in Wireless Sensor Networks Open Access. Elservier Computer Networks 38(4), 393–422

    Google Scholar 

  19. Shrivastava, N., et al.: Medians and beyond: new aggregation techniques for sensor networks. ACM (2004)

    Google Scholar 

  20. Greenwald, M.B., Khanna, S.: Power-conserving computation of order-statistics over sensor networks. ACM (2004)

    Google Scholar 

  21. Masiero, R., et al.: Data acquisition through joint compressive sensing and principal component analysis. IEEE (2009)

    Google Scholar 

  22. Le Borgne, Y., Bontempi, G.: Unsupervised and supervised compression with principal component analysis in wireless sensor networks. In: 13th ACM International Conference on Knowledge Discovery and Data Mining, pp. 94–103. ACM Press, NY (2007)

    Google Scholar 

  23. Cam, H., et al.: Energy-efficient secure pattern based data aggregation for wireless sensor networks. Computer Comm. 29(4), 446–455 (2006)

    Article  Google Scholar 

  24. He, T., Bium, B.M., Stankovic, J.A., Abdelzaher, T.: AIDA: Adaptive Application Independent Data Aggregation in Wireless Sensor Networks. ACM Transactions on Embedded Computing System

    Google Scholar 

  25. Köpke, A., Karl, H., Wolisz, A.: Consensus in WSN–Identifying critical protocol mechanisms. In: GI/ITG Fachgespräch Drahtlose Sensornetze, p. 39. Universitat Karlsruhe, Karlsruhe, (TH)(February 2004)

    Google Scholar 

  26. Chen, Z., Shin, K.G.: OPAG: Opportunistic data aggregation in wireless sensor networks. In: Real-Time Syst Symp. IEEE, Barcelona (2008)

    Google Scholar 

  27. Gu, L., et al.: Lightweight detection and classification for wireless sensor networks in realistic environments (2005)

    Google Scholar 

  28. Sheybani, E.: Dimensionality Reduction and Noise Removal in Wireless Sensor Networks. In: 4th IFIP International Conference on New Technologies, Mobility and Security (NTMS). IEEE (2011)

    Google Scholar 

  29. Kulakov, A., Davcev, D., Trajkovski, G.: Application of wavelet neural-networks in wireless sensor networks. Software Engineering, Artificial Intelligence, Networking and Parallel/Distr. Computing (2005)

    Google Scholar 

  30. Ciancio, A., Ortega, A.: A distributed wavelet compression algorithm for wireless multihop sensor networks using lifting. In: Proceedings of Acoustics, Speech, and Signal Processing (ICASSP 2005). IEEE (2005)

    Google Scholar 

  31. Mascolo, C., Musolesi, M.: SCAR: context-aware adaptive routing in delay tolerant mobile sensor networks. In: Proceedings of the 2006 International Conference on Wireless Communications and Mobile Computing. ACM (2006)

    Google Scholar 

  32. Olfati-Saber, R.: Distributed Kalman filtering and sensor fusion in sensor networks. Networked Embedded Sensing and Control, 157–167 (2006)

    Google Scholar 

  33. Olfati-Saber, R., Sandell, N.F.: Distributed tracking in sensor networks with limited sensing range. In: American Control Conference. IEEE, Seattle (2008)

    Google Scholar 

  34. Spanos, D.P., Olfati-Saber, R., Murray, R.M.: Approximate distributed Kalman filtering in sensor networks with quantifiable performance. In: 2005 Fourth International Symposium on Information Processing in Sensor Networks (IPSN). IEEE Press (2005)

    Google Scholar 

  35. Sinopoli, B., et al.: Kalman filtering with intermittent observations. IEEE Transactions on Automatic Control 49(9), 1453–1464 (2004)

    Article  MathSciNet  Google Scholar 

  36. Djuric, P.M., Vemula, M., Bugallo, M.F.: Tracking with particle filtering in tertiary wireless sensor networks. IEEE (2005)

    Google Scholar 

  37. Coates, M.: Distributed particle filters for sensor networks. ACM (2004)

    Google Scholar 

  38. Wong, Y., et al.: Collaborative data fusion tracking in sensor networks using monte carlo methods. IEEE (2004)

    Google Scholar 

  39. Ahmed, N., et al.: Detection and tracking using wireless sensor networks. In: Proceedings of the 5th International Conference on Embedded Networked Sensor Systems. ACM (2007)

    Google Scholar 

  40. Ozdemir, O., Niu, R., Varshney, P.K.: Tracking in wireless sensor networks using particle filtering: Physical layer considerations. IEEE Transactions on Signal Processing 57(5), 1987–1999 (2009)

    Article  Google Scholar 

  41. Swaszek, P.F., Willett, P.: Parley as an approach to distributed detection. IEEE Transactions on Aerospace and Electronic Systems 31(1), 447–457 (1995)

    Article  Google Scholar 

  42. Quek, T.Q.S., Dardari, D., Win, M.Z.: Energy efficiency of dense wireless sensor networks: To cooperate or not to cooperate. IEEE Journal on Selected Areas in Communications 25(2), 459–470 (2007)

    Article  Google Scholar 

  43. Van Dyck, R.E.: Detection performance in self-organized wireless sensor networks. IEEE (2002)

    Google Scholar 

  44. Probst, M.J., Kasera, S.K.: Statistical trust establishment in wireless sensor networks. IEEE (2007)

    Google Scholar 

  45. Krishnamachari, B., Iyengar, S.: Distributed bayesian algorithms for fault-tolerant event region detection in wireless sensor networks. IEEE Transactions on Computers 53(3), 241–250 (2004)

    Article  Google Scholar 

  46. Hartl, G., Li, B.: infer: A Bayesian inference approach towards energy efficient data collection in dense sensor networks. IEEE (2005)

    Google Scholar 

  47. Cou, C., et al.: Multi-sensor data fusion using Bayesian programming: An automotive application. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE (2002)

    Google Scholar 

  48. Yu, B., et al.: Uncertain information fusion for force aggregation and classification in airborne sensor networks. In: AAAI 2004 Workshop on Sensor Networks. AAAI Press (2004)

    Google Scholar 

  49. Li, S., et al.: Event detection services using data service middleware in distributed sensor networks. Telecom Systems 26(2), 351–368 (2004)

    Article  Google Scholar 

  50. Nakamura, E.F., et al.: Using information fusion to assist data dissemination in wireless sensor networks. Telecommunication Systems 30(1), 237–254 (2005)

    Article  Google Scholar 

  51. Su, W., Bougiouklis, T.C.: Data fusion algorithms in cluster-based wireless sensor networks using fuzzy logic theory. In: ICCOM 2007 Proceedings of the 11th Conference on 11th WSEAS International Conference on Communications. WSEAS (2007)

    Google Scholar 

  52. Manjunatha, P., Verma, A., Srividya, A.: Multi-Sensor Data Fusion in Cluster based Wireless Sensor Networks Using Fuzzy Logic Method. In: Industrial and Information Systems, ICIIS 2008. IEEE (2008)

    Google Scholar 

  53. Sun, L.Y., Cai, W., Huang, X.X.: Data aggregation scheme using neural networks in wireless sensor networks. In: 2010 2nd International Conference on Future Computer and Communication (ICFCC). IEEE (2010)

    Google Scholar 

  54. Sung, W.T., et al.: Multi-sensors data fusion for precise measurement based on ZigBee WSN via fuzzy control. In: 2010 International Symposium on Computer Communication Control and Automation (3CA). IEEE (2010)

    Google Scholar 

  55. Li, Y.Y., Parker, L.E.: Intruder detection using a wireless sensor network with an intelligent mobile robot response. In: Southeastcon. IEEE (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tariq, QuA.I., Ahmed, S., Zia, H. (2012). An Objective Based Classification of Aggregation Techniques for Wireless Sensor Networks. In: Chowdhry, B.S., Shaikh, F.K., Hussain, D.M.A., Uqaili, M.A. (eds) Emerging Trends and Applications in Information Communication Technologies. IMTIC 2012. Communications in Computer and Information Science, vol 281. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28962-0_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28962-0_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28961-3

  • Online ISBN: 978-3-642-28962-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics