Skip to main content

Haplotype Segment Algorithm for Predicting Disease Gene Locus Based on Distance/Similarity Measures

  • Conference paper
Book cover Emerging Trends and Applications in Information Communication Technologies (IMTIC 2012)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 281))

Included in the following conference series:

  • 1430 Accesses

Abstract

In this paper, we address the problem of locating a disease gene using a new Haplotype Segment Algorithm based on distance/similarity measures. We developed a novel approach to identify the set of associated marker alleles in the form of haplotype segments. We measure the distance of haplotype segments in cases and controls. We find the two haplotype segments in cases which have least distance than controls and observe that the disease location lies between these two haplotype segments. Haplotype Segment Algorithm performs the similarity analysis of haplotypes and finds the location of a disease gene using various distance/similarity measures. Haplotype Segment Algorithm uses the similarity or distance measures so this algorithm has the capability to reduce or delete the noise from the segments and finds a precise location of disease gene. The new algorithm detects the disease gene even if there exists 5% mutant chromosomes in the human genome. We applied new algorithm on simulated datasets and find the location of disease gene very close to the true simulated location. We also assessed the performance of Haplotype Segment Algorithm on a real dataset called Friedreich Ataxia’s dataset in detecting a disease gene location and find the consistent results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Li, J., Jiang, T.: Haplotype-based linkage disequilibrium mapping via direct data mining. Bioinformatics 21, 4384–4393 (2005)

    Article  Google Scholar 

  2. Toivonen, H., Onkamo, P., Vasko, K., Ollikainen, V., Sevon, P., Mannila, H., Herr, M., Kere, J.: Data mining applied to linkage disequilibrium mapping. American Journal of Human Genetics 67, 133–145 (2000)

    Article  Google Scholar 

  3. Toivonen, H., Onkamo, P., Vasko, K., Ollikainen, V., Sevon, P., Mannila, H., Kere, J.: Gene Mapping by Haplotype Pattern Mining. In: IEEE Proc. Int’l Symposium Bioinformatics and Biomedical Engineering (BIBE), pp. 99–108 (2001)

    Google Scholar 

  4. Besenbacher, S., Pedersen, C.N., Mailund, T.: A fast algorithm for genome-wide haplotype pattern mining. In: Proc. of Int’l Conf. on Bioinformatics, Beijing, China (2009)

    Google Scholar 

  5. Lin, L., Wong, L., Leong, T., Lai, P.: LinkageTracker: A Discriminative Pattern Tracking Approach to Linkage is equilibrium Mapping. In: Zhou, L.-z., Ooi, B.-C., Meng, X. (eds.) DASFAA 2005. LNCS, vol. 3453, pp. 30–42. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Reeve, J.P., Rannala, B.: DMLE+: Bayesian linkage disequilibrium gene mapping. Bioinformatics, 894–895 (2002)

    Google Scholar 

  7. Liu, J., Sabatti, C., Teng, J., Keats, B., Risch, N.: Bayesian Analysis of Haplotypes for Linkage Disequilibrium Mapping. Genome Research 11, 1716–1724 (2001)

    Article  Google Scholar 

  8. Lu, X., Niu, T., Liu, J.S.: Haplotype information and linkage disequilibrium mapping for single nucleotide polymorphisms. Genome Research 13, 2112–2117 (2003)

    Article  Google Scholar 

  9. Kaplan, N.L., Hill, W.G., Weir, B.S.: Likelihood methods for locating disease genes in non-equilbrium populations. American Journal of Human Genetics 56, 18–32 (1995)

    Google Scholar 

  10. Mailund, T., Schierup, M.H., Pedersen, C.N.S., Madsen, J.N., Hein, J., Schauser, L.: GeneRecon: A coalescent based tool for fine-scale association mapping. Bioinformatics 22, 2317–2318 (2006)

    Article  Google Scholar 

  11. Ester, M., Kriegel, K.P., Sander, H., Xu, X.: A density-based algorithm for discovering clusters in large spatial datasets with noise. In: Proc. of Knowledge Discovery in Data (KDD), pp. 226–231 (1996)

    Google Scholar 

  12. Sevon, P., Toivonen, H., Ollikainen, V.: TreeDT: Tree Pattern Mining for Gene Mapping. IEEE Transactions on Computational Biology and Bioinformatics 3, 174–185 (2006)

    Article  Google Scholar 

  13. Ahmed, A.: A Heuristic Approach to the Identification of Disease Gene Region using Haplotype Analysis, 15th Human Genome Meeting, 4th Pan Arab Human Genetics Conference, Dubai, United Arab Emirates, HUGO Journal, 5, 156 (2011)

    Google Scholar 

  14. Long, A., Langley, C.: The power of association studies to detect the contribution of candidate genetic loci to variation in complex traits. Genome Research 9, 720–731 (1999)

    Google Scholar 

  15. Cha,S.: Comprehensive Survey on Distance/Similarity Measures between Probability Density Functions. Int’l. Journal of Mathematical Models and Methods in Applied Sciences (2007)

    Google Scholar 

  16. Li, G., Wang, Y., Li, M., Wu, Z.: Similarity Match in Time Series Streams under Dynamic Time Warping Distance. In: Proc. of Int’l Conf. on Computer Science and Software Engineering (CSSE), vol. 4, pp. 399–402 (2008)

    Google Scholar 

  17. Sirugo, G., Keats, B., Fujita, R., Duclos, F., Purohit, K., Koenig, M., Mandel, J.L.: Friedreich Ataxia in Louisiana Acadians: Demonstration of Founder Effect by Analysis of Microsatellite-generated Extended Haplotypes. Am. J. Hum. Genet. 50, 559–566 (1992)

    Google Scholar 

  18. Campuzano, V., Montermini, L., Molto, M.D., Pianese, L., Cossee, M., Cavalcanti, F., Monros, E., Rodius, F., Duclos, F., Monticelli, A.: Friedreich’s ataxia: Autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271, 1423–1427 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ahmed, A., Saleem, K. (2012). Haplotype Segment Algorithm for Predicting Disease Gene Locus Based on Distance/Similarity Measures. In: Chowdhry, B.S., Shaikh, F.K., Hussain, D.M.A., Uqaili, M.A. (eds) Emerging Trends and Applications in Information Communication Technologies. IMTIC 2012. Communications in Computer and Information Science, vol 281. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28962-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28962-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28961-3

  • Online ISBN: 978-3-642-28962-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics