Skip to main content

Reference Value Generator of Maximum Power Point Coordinates of the Photovoltaic Panel External Characteristic

  • Chapter
New Concepts and Applications in Soft Computing

Part of the book series: Studies in Computational Intelligence ((SCI,volume 417))

  • 778 Accesses

Abstract

Generally, maximum power point tracking strategies designed to control the solar panels are based on using as references the coordinates of maximum power point of the solar panel external characteristic I(V). The tracking problem makes sense due to the variability of the external characteristic with respect to panel temperature, θ PV_P , and total radiation absorbed by the panel, G PV_P . This chapter presents a solution to obtain the coordinate of the maximum power point from the variables that may be directly measured: air temperature θ air , normal direct radiation G h − dir and diffuse horizontal radiation G h − diff . A structure called reference value generator, composed by two blocks, Estimator block and Generator block, is used to calculate the coordinates. The first block estimates from θ air , G h − dir and G h − diff the values of θ PV_P and G PV_P , while the second generates the desired coordinates.

As starting point to develop the model of the solar panel and to extract the maximum power point coordinates, a two diodes electrical circuit was considered. Finally, a generator block consisting in a look-up model is designed. Because for practical cases only a small number of experimental external characteristics are available the generator uses a global interpolation method. The presentation is built on a case study that exploits experimental characteristics taken from references.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Planning and Installing Photovoltaic Systems, pp. 1–90, The German Solar Energy Society, Germany. Ecofys (2005)

    Google Scholar 

  2. Cheegar, M., Ouennoughi, Z., Guechi, F., Langueur, H.: Determination of Solar Cells Parameters under Illuminated Conditions. Journal of Electron Devices 2, 17–21 (2003)

    Google Scholar 

  3. Chegaar, M., Ouennoughi, Z., Guechi, F.: Extracting dc parameters of solar cells under illumination. Vacuum 75, 367–372 (2004)

    Article  Google Scholar 

  4. Chirarattananona, S., Rukkwansukb, P., Chaiwiwatworakula, P., Pakdeepo, P.: Evaluation of vertical illuminance and irradiance models against data from north Bangkok. Journal of Building and Environment 42(11), 3894–3904 (2007)

    Article  Google Scholar 

  5. Chu, C.-C., Chen, C.-L.: Robust maximum power point tracking method for photovoltaic. Sol. Energy (2009), doi:10.1016 / j.solener.2009. 03.005

    Google Scholar 

  6. Di Piazza, M.C., Ragusa, A., Vitale, G.: Identification of Photovoltaic Array Model Parameters by Robust Linear Regression Methods. In: International Conference on Renewable Energies and Power Quality (ICREPQ 2009), Valencia (Spain), April 15-17 (2009)

    Google Scholar 

  7. Dragomir, T.L., Petcuţ, F., Dragomir, L.E.: Maximum Power Point Determination for a Photovoltaic Panel using a Simulink Model. In: 4th International Workshop on Soft Computing Applications, Arad, Romania, July 15-17, pp. 221–224 (2010)

    Google Scholar 

  8. Dragomir, T.L., Petcuţ, F.: Look Up Models for Maximum Power Point of Photovoltaic Panels, Ingineria românească în faţa provocărilor secolului 21 – Lucrările Ediţiei a V-a a Conferinţei Naţionale ZILELE ACADEMICE ale Academiei de Ştiinţe Tehnice din România, Editura AGIR, Craiova, Romania, pp. 289–296 (Septembrie 2010) ISSN 2066-6586

    Google Scholar 

  9. Dragomir, T.L., Petreuş, D.M., Petcuţ, F.M., Ciocan, I.C.: Comparative analysis of identification methods of the photovoltaic panel characteristics. In: Proc. IEEE International Conference on Automation, Quality and Testing, Robotics - AQTR 2010, Cluj-Napoca, Romania, May 2010, vol. 3, pp. 64–69 (2010)

    Google Scholar 

  10. Drechsel, D.: Regelbasierte Interpolation und fuzzy control. Vieweg (1996)

    Google Scholar 

  11. Gules, R., Pacheco, J.D.P., Hey, H.L., Imhoff, J.: A Maximum Power Point Tracking System With Parallel Connection for PV Stand-Alone Applications. IEEE Transactions on Industrial Electronics 55, 2674–2682 (2008)

    Article  Google Scholar 

  12. Kasten, F.: A new table and approximation formula for relative air mass. Arch. Meteor. Geophysics. Bioklimatol., Ser. B 14, 206–223 (1965)

    Article  Google Scholar 

  13. Kasten, F., Young, A.T.: Revised optical air mass tables and approximation formula. Applied Optics 28, 4735–4738 (1989)

    Article  Google Scholar 

  14. Liqun, L., Zhixin, W.: A Variable Voltage MPPT Control Method for Photovoltaic Generation System. WSEAS Transaction on Circuits and Systems 8, 335–349 (2009)

    Google Scholar 

  15. Makvart, T.: Solar Electricity, 2nd edn. John Wiley & Sons (2000)

    Google Scholar 

  16. Nehaoua, N., Chergui, Y., Mekki, D.E.: Determination of organic solar cell parameters based on single or multiple pin structures. Vacuum 84, 326–329 (2010)

    Article  Google Scholar 

  17. Nooriana, A.M., Moradib, I., Kamali, G.A.: Evaluation of 12 models to estimate hourly diffuse irradiation on inclined surfaces. Renewable Energy 33, 1406–1412 (2008)

    Article  Google Scholar 

  18. Partridge, G.W., Platt, C.M.R.: Radiative Processes in Meteorology and Climatology. Elsevier (1976)

    Google Scholar 

  19. Paulescu, M., Dughir, C., Tulcan-Paulescu, E., Lascu, M., Gravila, P., Jurca, T.: Solar Radiation Modeling and Measurements in Timisoara, Romania: Data and Model Quality. Environmental Engineering and Management Journal (EEMJ) 9 &8, 1089–1095 (2010)

    Google Scholar 

  20. Perez, R., Seals, R., Ineichen, P., Menicucci, D.: A new simplified version of the Perez diffuse irradiance model for tilted surfaces. Solar Energy 39(3), 221–231 (1987)

    Article  Google Scholar 

  21. Perez, R., Ineichen, P., Seals, R., Michalsky, J., Stewart, R.: Modeling Daylight Availability and Irradiance Components from Direct and Global Irradiance. Solar Energy 44(5), 271–289 (1990)

    Article  Google Scholar 

  22. Petcuţ, F., Dragomir, T.L.: Solar Cell Parameter Identification Using Genetic Algorithms. In: CEAI, vol. 12(1), pp. 30–37 (2010)

    Google Scholar 

  23. Petreuş, D., Ciocan, I., Fărcaş, C.: Improvement on Empirical Modelling of Photovoltaic Cells. In: The 31st International Spring Seminar on Electronics Technology for Electronics-Reliability and Life-time Prediction, Budapest, Hungary, May 7-11, pp. 612–617 (2008)

    Google Scholar 

  24. Petreuş, D.M., Ciocan, I.C., Rusu, A.R., Cadar, D.V.: Maximum Power Point Traking Simulator in Charging Photovoltaic Systems. Acta Technica Napocensis Electronics and Telecomunications 50(2) (2009)

    Google Scholar 

  25. Robinson, D.: Climate as a Pre-Design Tool. In: Proceedings of the Eighth International IBPSA Conference, Eindhoven, Netherlands, August 11-14, pp. 1109–1116 (2003)

    Google Scholar 

  26. Soga, K., Akasaka, H., Nimiya, H.: A Comparison of Methods to Estimate Hourly Total Irradiation on Tilted Surfaces from Hourly Global Irradiation on a Horizontal Surface. In: Proc. of Sixth International Conference Building Simulation 1999, Kyoto, Japan, pp. 635–642 (1999)

    Google Scholar 

  27. Tafticht, K., Agbossou, M.L., Doumbia, A.C.: An improved maximum power point tracking method for photovoltaic systems. Renewable Energy 33, 1508–1516 (2008)

    Article  Google Scholar 

  28. van der Borg, N.J.C.M., Burgers, A.R.: Inverter Undersizing in PV Systems. In: Proceedings of 3rd World Conference on Photovoltaic Energy Conversion, vol. 2, pp. 2066–2069, May 12-16 (2069)

    Google Scholar 

  29. Yang, H., Lu, L., Zhou, W.: A novel optimization sizing model for hybrid solar-wind power generation system. Solar Energy 81(1), 76–84 (2007)

    Article  Google Scholar 

  30. Wang, Q., Tenhunen, J., Schmidt, M., Kolcun, O., Droesler, M., Reichstein, M.: Estimation of total, direct and diffuse PAR under clear skies in complex alpine terrain of the National Park Berchtesgaden, Germany. Ecological Modelling 196(1-2), 149–162 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toma-Leonida Dragomir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dragomir, TL., Petcuţ, FM., Korodi, A. (2013). Reference Value Generator of Maximum Power Point Coordinates of the Photovoltaic Panel External Characteristic. In: Balas, V., Fodor, J., Várkonyi-Kóczy, A. (eds) New Concepts and Applications in Soft Computing. Studies in Computational Intelligence, vol 417. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28959-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28959-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28958-3

  • Online ISBN: 978-3-642-28959-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics