Skip to main content

Antimicrobial Textiles

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 211))

Abstract

Bacteria have evolved unique mechanisms that allow them survive in the presence of strong selection pressures. Included in these mechanisms is the ability to share genetic determinants among and between species of bacteria thus spreading metal or antibiotic resistance traits quickly. The textile industry in response to demand has developed antimicrobial fabrics by the addition of bactericidal compounds during production. Some of these antimicrobials include metal nanoparticles, quaternary ammonia compounds, and broad spectrum compounds like triclosan. Bacteria have already expressed resistance to each of these bactericides. Here we discuss the evolutionary and ecological consequences of antimicrobial textiles in terms of co-selection. We predict that continued use of such materials could result in increased and widespread resistance to specific antimicrobials, especially metals, with an increased resistance to antibiotics. Such increases have the potential to find their way into other bacterial populations of human pathogens leading to serious and unintended public health consequences.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alonso A, Sanchez P, Martinez JL (2001) Environmental selection of antibiotic resistance genes. Environ Microbiol 3:1–9

    Article  PubMed  CAS  Google Scholar 

  • Andersson D, Levin BR (1999) The biological cost of antibiotic resistance. Curr Opin Microbiol 2:489–493

    Article  PubMed  CAS  Google Scholar 

  • Baker-Austin C, Dopson M, Wexler M, Sawers G, Bond PL (2005) Molecular insight into extreme copper resistance in the acidophilic archaeon ‘Ferroplasma acidarmanus’ Fer1. Microbiology 151:2637–2646

    Article  PubMed  CAS  Google Scholar 

  • Baker-Austin C, Wright MS, Stepanauskas R, McArthur JV (2006) Co-selection of antibiotic and metal resistance. Trends Microbiol 14:176–182

    Article  PubMed  CAS  Google Scholar 

  • Baker-Austin C, McArthur JV, Lindell AH, Wright MS, Tuckfield RC, Gooch J, Warner L, Oliver J, Stepanauskas R (2009) Multi-site analysis reveals widespread antibiotic resistance in the marine pathogen Vibrio vulnificus. Microb Ecol 57:151–159

    Article  PubMed  CAS  Google Scholar 

  • Baquero F, Martinez JL, Canton R (2008) Antibiotics and antibiotic resistance in water environments. Curr Opin Biotechnol 19:260–265

    Article  PubMed  CAS  Google Scholar 

  • Brunne D (1986) Metal release from dental biomaterials. Biomaterials 7:163–175

    Article  Google Scholar 

  • Catauro M, Raucci MG, De Gaetano FD, Marotta A (2004) Antibacterial and bioactive silver-containing Na2O × CaO × 2SiO2 glass prepared by sol-gel method. J Mater Sci Mater Med 15:831–837

    Article  PubMed  CAS  Google Scholar 

  • Charley RC, Bull AT (1979) Bioaccumulation of silver by a multispecies community of bacteria. Arch Microbiol 123:239–244

    Article  PubMed  CAS  Google Scholar 

  • Chopra I (2007) The increasing use of silver-based products as antimicrobial agents: a useful development or a cause for concern? J Antimicrob Chemother 59:587–59

    Article  PubMed  CAS  Google Scholar 

  • Clardy J, Fischbach M, Currie C (2009) The natural history of antibiotics. Curr Biol 19:R437–R441

    Article  PubMed  CAS  Google Scholar 

  • Crabtree JH, Burchette RJ, Siddiqi RA, Huen IT, Handott LL, Fishman A (2003) The efficacy of silver-ion implanted catheters in reducing peritoneal dialysis-related infections. Perit Dial Int 23:368–74

    PubMed  CAS  Google Scholar 

  • D’Costa VM, Griffiths E, Wright GD (2007) Expanding the soil antibiotic resistome: exploring environmental diversity. Curr Opin Microbiol 2007(10):481–489

    Article  Google Scholar 

  • Davies J, Davies D (2010) Evolution of antibiotic resistance. Microbiol Mol Biol Rev 74:417–433

    Article  PubMed  CAS  Google Scholar 

  • Davis IJ, Richard H, Mullany P (2005) Isolation of silver- and antibiotic-resistant Enterobacter cloacae from teeth. Oral Microbiol Immunol 20:191–194

    Article  PubMed  CAS  Google Scholar 

  • Davison J (1999) Genetic exchange between bacteria in the environment. Plasmid 42:73–91

    Article  PubMed  CAS  Google Scholar 

  • Dubas ST, Kumlangdudsana P, Potiyaraj P (2006) Layer-by-layer deposition of antimicrobial silver nanoparticles on textile fibers. Colloid Surf A Physicochem Eng Asp 289:105–109

    Article  CAS  Google Scholar 

  • Dykhuizen DE (1998) Santa Rosalia revisited: why are there so many species of bacteria? Antonie Van Leeuwenhoek 73(25–33):1998

    Google Scholar 

  • Enne VI, Livermore DM, Stephens P, Hall LMC (2001) Persistence of sulphonamide resistance in Escherichia coli in the UK despite national prescribing restriction. Lancet 357:1325–1328

    Article  PubMed  CAS  Google Scholar 

  • Falletta E, Bonini M, Fratini E, Nostro AL, Pesavento G, Becheri A, Nostro PL, Canton P, Baglioni P (2008) Clusters of poly(acrylates) and silver nanoparticles: structure and applications for antimicrobial fabrics. J Phys Chem 112:11758–11766

    CAS  Google Scholar 

  • Franke S, Gras G, Nies DH (2001) The product of the ybdE gene of the Escherichia coli chromosome is involved in detoxification of silver ions. Microbiology 147:965–972

    PubMed  CAS  Google Scholar 

  • Gao Y, Cranston R (2008) Recent advances in antimicrobial treatments of textiles. Tex Res J 2008(78):60–72

    Google Scholar 

  • Gupta A, Matsui K, Lo JF, Silver S (1999) Molecular basis for resistance to silver cations in Salmonella. Nat Med 5:183–188

    Article  PubMed  CAS  Google Scholar 

  • Gupta A, Phung LT, Taylor DE, Silver S (2001) Silver resistance genes in plasmids of the IncHII incompatibility group and on the Escherichia coli chromosome. Microbiology 147:3393–3402

    PubMed  CAS  Google Scholar 

  • Haefeli C, Franklin C, Hardy K (1984) Plasmid-determined silver resistance in Pseudomonas stutzeri isolated from a silver mine. J Bacteriol 158:389–392

    PubMed  CAS  Google Scholar 

  • Heuer H, Smalla K (2007) Manure and sulfadiazine synergistically increased bacterial antibiotic resistance in soil over at least two months. Environ Microbiol 9:657–666

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, Kuk E, Yu KN, Kim J, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang C, Kim YK, Lee YS, Jeong DH, Cho M (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3:95–101

    Article  PubMed  CAS  Google Scholar 

  • Klasen HJ (2000) Historical review of the use of silver in the treatment of burns. Part I. Early uses. Burns 26:117–130

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Leung P, Yao L, Song QW, Newton E (2006) Antimicrobial effect of surgical masks coated with nanoparticles. J Hosp Infect 62:58–63

    Article  PubMed  CAS  Google Scholar 

  • Lorenz MG, Wackernagel W (1994) Bacterial gene-transfer by natural genetic-transformation in the environment. Microbiol Rev 58:563–602

    PubMed  CAS  Google Scholar 

  • MacLean RC, Hall AR, Perron GG, Buckling A (2010) The evolution of antibiotic resistance: Insight into the roles of molecular mechanisms of resistance and treatment context. Discovery Medicine. http://www.discoverymedicine.com/R-Craig-MacLean/2010/08/04/the-evolution-of-antibiotic-resistance-insight-into-the-roles-of-molecular-mechanisms-of-resistance-and-treatment-context/

  • Mahendra Rai M, Yadav A, Gade A (2009) Toxic Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83

    Article  PubMed  Google Scholar 

  • Mandal DME, Bolander D, Mukhopadhyay GS, Mukherjee P (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 69:485–492

    Article  PubMed  CAS  Google Scholar 

  • Mazzola L (2003) Commercializing nanotechnology. Nat Biotechnol 21:1127–1143

    Article  Google Scholar 

  • McHugh SL, Moellering RC, Hopkins CC, Swartz MN (1975) Salmonella typhimurium resistant to silver nitrate, chloramphenicol, and ampicillin. Lancet 1:235–240

    Article  PubMed  CAS  Google Scholar 

  • Neal AL (2008) What can be inferred from bacterium–nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles? Ecotoxicology 17:362–371

    Article  PubMed  CAS  Google Scholar 

  • O’Brien T (2002) Emergence, spread, and environmental effect of antimicrobial resistance: how use of an antimicrobial anywhere can increase resistance to any antimicrobial anywhere else. Clin Infect Dis 34:S78–84

    Article  PubMed  Google Scholar 

  • Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304

    Article  PubMed  CAS  Google Scholar 

  • Ohshima M (2003) Control and design problems in material processing—how can process systems engineers contribute to material processing? J Process Cont 7:599–605

    Article  Google Scholar 

  • Pei RT, Kim SC, Carlson KH, Pruden A (2006) Effect of River Landscape on the sediment concentrations of antibiotics and corresponding antibiotic resistance genes (ARG). Water Res 40:2427–2435

    Article  PubMed  CAS  Google Scholar 

  • Percival SL, Bowlera PG, Russell D (2005) Bacterial resistance to silver in wound care. J Hosp Infect 60:1–7

    Article  PubMed  CAS  Google Scholar 

  • Sampath LA, Chowdhury N, Caraos L, Modak SM (1995) Infection resistance of surface modified catheters with either shortlived or prolonged activity. J Hosp Infect 30:201–210

    Article  PubMed  CAS  Google Scholar 

  • Saengkiettiyut K, Rattanawaleedirojn P, Sangsuk S (2008) A study on the antimicrobial efficacy of nano silver containing textile. CMU J Nat Sci Special Issues on Nanotechnology 7:33–36

    Google Scholar 

  • Schrag SJ, Perrot VR, Levin BR (1997) Adaptation to the fitness costs of antibiotic resistance in Escherichia coli. Proc R Soc Lond B 264:1287–1291

    Article  CAS  Google Scholar 

  • Serov IN, Zhabrev VA, Margolin VI (2003) Problems of nanotechnology in modern materials science. Glass Phys Chem 29:169–178

    Article  CAS  Google Scholar 

  • Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D (2008) Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 18:103–112

    Article  Google Scholar 

  • Silver S, Phung LT (1996) Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol 50:753–789

    Article  PubMed  CAS  Google Scholar 

  • Silver S (1998) Genes for all metals—a bacterial view of the periodic table: The 1996 Thom Award Lecture. J Ind Microbiol Biotechnol 20:1–12

    Article  PubMed  CAS  Google Scholar 

  • Silver S (2003) Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev 27:341–353

    Article  PubMed  CAS  Google Scholar 

  • Silver S, Phung LT (1996) Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol 50:753–89

    Article  PubMed  CAS  Google Scholar 

  • Silver S, Phung LT, Silver G (2006) Silver as biocides in burn and wound dressings and bacterial resistance to silver compounds. J Ind Microbiol Biotechnol 33:627–634

    Article  PubMed  CAS  Google Scholar 

  • Smalla K, Haines AS, Jones K, Krogerrecklenfort E, Heuer H, Schloter M, Thomas CM (2006) Increased abundance of IncP-1 beta plasmids and mercury resistance genes in mercury-polluted river sediments: first discovery of IncP-1 beta plasmids with a complex mer transposon as the sole accessory element. Appl Environ Microbiol 72:7253–7259

    Article  PubMed  CAS  Google Scholar 

  • Sobecky PA (1999) Plasmid ecology of marine sediment microbial communities. Hydrobiologia 401:9–18

    Article  CAS  Google Scholar 

  • Stepanauskas R, Glenn TC, Jagoe CH, Tuckfield RC, Lindell AH, McArthur JV (2005) Elevated microbial tolerance to metals and antibiotics in metal-contaminated industrial environments. Environ Sci Technol 39:3671–3678

    Article  PubMed  CAS  Google Scholar 

  • Stepanauskas R, Glenn TC, Jagoe CH, Tuckfield RC, Lindell AH, King CJ, McArthur JV (2006) Coselection for microbial resistance to metals and antibiotics in freshwater microcosms. Environ Microbiol 8:1510–1514

    Article  PubMed  CAS  Google Scholar 

  • Summers A, Wireman J, Vimy MJ, Lorscheider FL, Marshall B, Levy SB, Bennett S, Billard L (1993) Mercury released from dental silver fillings provokes an increase in mercury-resistant and antibiotic-resistant bacteria in oral and intestinal floras of Primates. Antimicrob Agents Chemother 37:825–834

    Article  PubMed  CAS  Google Scholar 

  • Szczepanowski R, Bekel T, Goesmann A, Krause L, Krömeke H, Kaiser O, Eichler W, Pühler A, Schlüter A (2008) Insight into the plasmid metagenome of wastewater treatment plant bacteria showing reduced susceptibility to antimicrobial drugs analysed by the 454-pyrosequencing technology. J Biotechnol 136:54–64

    Article  PubMed  CAS  Google Scholar 

  • Tomšič B, Simončič B, Orel B, Žerjav M, Schroers H, Simončič A, Samardžija Z (2009) Antimicrobial activity of AgCl embedded in a silica matrix on cotton fabric. Polymers 75:618–626

    Google Scholar 

  • Turner SL, Bailey MJ, Lilley AK, Thomas CM (2002) Ecological and molecular maintenance strategies of mobile genetic elements. FEMS Microbiol Ecol 42:177–185

    Article  PubMed  CAS  Google Scholar 

  • Walsh CT, Wright G (2005) Introduction: antibiotic resistance. Chem Rev 105:391–394

    Article  PubMed  CAS  Google Scholar 

  • Wang ZL (2000) Characterizing the structure and properties of individual wire-like nanoentities. Adv Mater 12:1295–1298

    Article  CAS  Google Scholar 

  • Weitz JS, Hartman H, Levin SA (2005) Coevolutionary arms races between bacteria and bacteriophage. PNAS 102:9535–9540

    Article  PubMed  CAS  Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95(12):6578–83

    Article  PubMed  CAS  Google Scholar 

  • Yurieva O, Kholodii G, Minakhin L, Gorlenko Z, Kalyaeva E, Mindlin S, Nikiforov V (1997) Intercontinental spread of promiscuous mercury-resistance transposons in environmental bacteria. Mol Microbiol 24:321–329

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Preparation of this chapter was partially supported by the US Department of Energy under Award Number DE-FC09-07SR225056 to the University of Georgia Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Vaun McArthur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

McArthur, J.V., Tuckfield, R.C., Baker-Austin, C. (2012). Antimicrobial Textiles. In: Coates, A. (eds) Antibiotic Resistance. Handbook of Experimental Pharmacology, vol 211. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28951-4_9

Download citation

Publish with us

Policies and ethics