Molecular Orientation by Intense Visible and THz Optical Pulses

  • K. KitanoEmail author
  • N. Ishii
  • J. Itatani
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 125)


We propose an all-optical method for achieving molecular orientation by two-step excitation with visible femtosecond laser (fs) and terahertz (THz) pulses. First, the femtosecond laser pulse induces off-resonant impulsive Raman excitation to create rotational wavepackets. Next, a delayed intense THz pulse effectively induces resonant dipole transition between neighboring rotational states. By controlling the intensities of both the pulses and the time delay, we can create rotational wavepackets consisting of states with different parities in order to achieve a high degree of molecular orientation under a field-free condition. We numerically demonstrate that the highest degree of orientation of \(\left < \cos \theta \right > > 0.8\) in HBr molecules is feasible under experimentally available conditions.


Femtosecond Laser Pulse Rotational State Molecular Orientation Intense Femtosecond Laser Pulse Laser Electric Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was partially supported by the Photon Frontier Network Program of the Ministry of Education, Culture, Sports, Science and Technology, Japan.


  1. 1.
    H. Stapelfeldt, T. Seideman, Rev. Mod. Phys. 75, 543 (2003)Google Scholar
  2. 2.
    H.J. Loesch, A. Remscheid, J. Chem. Phys. 93, 4779 (1990)Google Scholar
  3. 3.
    D.H. Parker, P.B. Bernstein, Annu. Rev. Phys. Chem. 40, 561 (1989)Google Scholar
  4. 4.
    B. Friedrich, D. Herschbach, J. Chem. Phys. 111, 6157 (1999)Google Scholar
  5. 5.
    H. Sakai et al., Phys. Rev. Lett. 90, 083001 (2003); L. Holmegaard et al., Phys. Rev. Lett. 102, 023001 (2009)Google Scholar
  6. 6.
    S. De et al., Phys. Rev. Lett. 103, 153002 (2009); K. Oda et al., Phys. Rev. Lett. 104, 213901 (2010)Google Scholar
  7. 7.
    O. Ghafur et al., Nat. Phys. 5, 289 (2009)Google Scholar
  8. 8.
    M. Machholm, N.E. Henriksen, Phys. Rev. Lett. 87, 193001 (2001); C.M. Dion et al., Eur. Phys. J. D 14, 249 (2001); D. Sugny et al., Phys. Rev. A 69, 033402 (2004); E. Gershnabel, I.S. Averbukh, R.J. Gordon, Phys. Rev. A 74, 053414 (2006)Google Scholar
  9. 9.
    D. Daems et al., Phys. Rev. Lett. 94, 153003 (2005)Google Scholar
  10. 10.
    K.-L. Yeh et al., Appl. Phys. Lett. 90, 171121 (2007)Google Scholar
  11. 11.
    S. Watanabe et al., Opt. Express 19, 1528 (2011)Google Scholar
  12. 12.
  13. 13.
    J.O. Hirschfelder et al., Molecular Theory of Gases and Liquids (Wiley, New York, 1954)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institute for Solid-State PhysicsUniversity of TokyoKashiwaJapan

Personalised recommendations