Advertisement

Trajectory-Based Coulomb-Corrected Strong Field Approximation

  • T.-M. Yan
  • S. V. Popruzhenko
  • M. J. J. Vrakking
  • D. BauerEmail author
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 125)

Abstract

The strong field approximation (SFA) is one of the most successful theoretical approaches in strong field physics. In the semiclassical limit, the SFA possesses an appealing interpretation in terms of interfering quantum trajectories. In this work, trajectory-based Coulomb-corrected SFA (TCSFA), a conceptually simple extension towards the inclusion of Coulomb interaction, is presented.

Notes

Acknowledgements

The work was partially supported by the Deutsche Forschungsgemeinschaft (SFB 652) and the Russian Foundation for Basic Research. T.-M. Y. acknowledges support from the International Max Planck Research School for Quantum Dynamics (IMPRS-QD) in Heidelberg. The work of M. J. J. V. is part of the research program of the “Stichting voor Fundamenteel Onderzoek der Materie (FOM)”, which is financially supported by the “Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO)”.

References

  1. 1.
    D.B. Milos̆ević et al., J. Phys. B 39, R203 (2006)Google Scholar
  2. 2.
    L.V. Keldysh, Zh. Éksp, Teor. Fiz. 47, 1945 (1964)Google Scholar
  3. 3.
    F.H.M. Faisal, J. Phys. B At. Mol. Phys. 6, L89 (1973)Google Scholar
  4. 4.
    H.R. Reiss, Phys. Rev. A 22, 1786 (1980)Google Scholar
  5. 5.
    W. Gordon, Z. Phys. 40, 117 (1926)Google Scholar
  6. 6.
    D.V. Volkov, Z. Phys. 94, 250 (1935)Google Scholar
  7. 7.
    M.V. Frolov et al., Phys. Rev. A 79, 033406 (2009)Google Scholar
  8. 8.
    D.B. Milos̆ević et al., Rev. Lett. 89, 153001 (2002)Google Scholar
  9. 9.
    W. Becker et al., Adv. At. Mol. Opt. Phys. 48, 35 (2002)Google Scholar
  10. 10.
    P. Salières et al., Science 292, 902 (2001)Google Scholar
  11. 11.
    V.S. Popov, Phys. At. Nucl. 68, 686 (2005)Google Scholar
  12. 12.
    S.V. Popruzhenko, D. Bauer, J. Mod. Opt. 55, 2573 (2008)Google Scholar
  13. 13.
    D.G. Arbó et al., Phys. Rev. Lett. 96, 143003 (2006)Google Scholar
  14. 14.
    R. Gopal et al., Phys. Rev. Lett. 103, 053001 (2009)Google Scholar
  15. 15.
    S. Chelkowski, A.D. Bandrauk, Phys. Rev. A 71, 053815 (2005)Google Scholar
  16. 16.
    Y. Huismans et al., Science 331, 61 (2010)Google Scholar
  17. 17.
    D. Bauer, P. Koval, Comput. Phys. Commun. 174, 396 (2006)Google Scholar
  18. 18.
    T.-M. Yan et al., Phys. Rev. Lett. 105, 253002 (2010)Google Scholar
  19. 19.
    C.I. Blaga et al., Nat. Phys. 5, 335 (2009)Google Scholar
  20. 20.
    W. Quan et al., Phys. Rev. Lett. 103, 093001 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • T.-M. Yan
    • 1
    • 2
  • S. V. Popruzhenko
    • 3
  • M. J. J. Vrakking
    • 4
    • 5
  • D. Bauer
    • 1
    Email author
  1. 1.Institut für PhysikUniversität RostockRostockGermany
  2. 2.Max-Planck-Institut für KernphysikHeidelbergGermany
  3. 3.National Research Nuclear University “Moscow Engineering Physics Institute”MoscowRussia
  4. 4.FOM-Institute AMOLFAmsterdamThe Netherlands
  5. 5.Max-Born-InstitutBerlinGermany

Personalised recommendations