Skip to main content

k-Means Clustering of Asymmetric Data

  • Conference paper
Hybrid Artificial Intelligent Systems (HAIS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7208))

Included in the following conference series:

Abstract

In this paper, an asymmetric k-means clustering algorithm is presented. The asymmetric version of this algorithm is derived using the asymmetric coefficients, which convey the information provided by the asymmetry in analyzed data sets. The formulation of the asymmetric k-means algorithm is motivated by the fact that, when an analyzed data set has the asymmetric nature, a data analysis algorithm should properly adjust to this nature. The traditional k-means approach using the symmetric dissimilarities does not apply correctly to this kind of phenomenon in data. We propose the k-means algorithm using the asymmetric coefficients, which has the ability to reflect the asymmetric relationships between objects in analyzed data sets. The results of our experimental study on real data show that the asymmetric k-means approach outperforms its symmetric counterpart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, A., Corchado, E., Corchado, J.M.: Hybrid Learning Machines. Neurocomputing 72(13/15), 2729–2730 (2009)

    Article  Google Scholar 

  2. Biau, G., Devroye, L., Lugosi, G.: On the Performance of Clustering in Hilbert Spaces. IEEE Transactions on Information Theory 54(2), 781–790 (2008)

    Article  MathSciNet  Google Scholar 

  3. Chengalvarayan, R., Deng, L.: HMM-Based Speech Recognition Using State-Dependent, Discriminatively Derived Transforms on Mel-Warped DFT Features. IEEE Transactions on Speech and Audio Processing 2(3), 243–256 (1997)

    Article  Google Scholar 

  4. Corchado, E., Abraham, A., Carvalho, A.: Hybrid Intelligent Algorithms and Applications. Information Sciences 180(14), 2633–2634 (2010)

    Article  MathSciNet  Google Scholar 

  5. Corchado, E., Graña, M., Woźniak, M.: New Trends and Applications on Hybrid Artificial Intelligence Systems. Neurocomputing 75(1), 61–63 (2012)

    Article  Google Scholar 

  6. Goldberger, A.L., Amaral, L.A.N., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.K., Stanley, H.E.: PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220, circulation Electronic Pages (2000), http://circ.ahajournals.org/cgi/content/full/101/23/e215

    Google Scholar 

  7. Halkidi, M., Batistakis, Y., Vazirgiannis, M.: On Clustering Validation Techniques. Journal of Intelligent Information Systems 17(2/3), 107–145 (2001)

    Article  MATH  Google Scholar 

  8. Handl, J., Knowles, J., Kell, D.B.: Computational Cluster Validation in Post-genomic Data Analysis. Bioinformatics 21(15), 3201–3212 (2005)

    Article  Google Scholar 

  9. Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: An Efficient k-Means Clustering Algorithm: Analysis and Implemetation. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7), 881–892 (2002)

    Article  Google Scholar 

  10. MacQueen, J.: Some Methods for Classification and Analysis of Multivariate Observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297 (1967)

    Google Scholar 

  11. Martín-Merino, M., Muñoz, A.: Visualizing Asymmetric Proximities with SOM and MDS Models. Neurocomputing 63, 171–192 (2005)

    Article  Google Scholar 

  12. Muñoz, A., Martin, I., Moguerza, J.M.: Support Vector Machine Classifiers for Asymmetric Proximities. In: Kaynak, O., Alpaydın, E., Oja, E., Xu, L. (eds.) ICANN 2003 and ICONIP 2003. LNCS, vol. 2714, pp. 217–224. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  13. Muñoz, A., Martín-Merino, M.: New Asymmetric Iterative Scaling Models for the Generation of Textual Word Maps. In: Proceedings of the International Conference on Textual Data Statistical Analysis JADT 2002, pp. 593–603 (2002)

    Google Scholar 

  14. Okada, A.: An Asymmetric Cluster Analysis Study of Car Switching Data. In: Data Analysis. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Heidelberg (2000)

    Google Scholar 

  15. Okada, A., Imaizumi, T.: Asymmetric Multidimensional Scaling of Two-Mode Three-Way Proximities. Journal of Classification 14(2), 195–224 (1997)

    Article  MATH  Google Scholar 

  16. Okada, A., Imaizumi, T.: Joint Space Model for Multidimensional Scaling of Two-Mode Three-Way Asymmetric Proximities. In: Innovations in Classification, Data Science, and Information Systems. Studies in Classification, Data Analysis, and Knowledge Organization, pp. 371–378. Springer, Heidelberg (2003)

    Google Scholar 

  17. Okada, A., Imaizumi, T.: Multidimensional Scaling of Asymmetric Proximities with a Dominance Point. In: Advances in Data Analysis. Studies in Classification, Data Analysis, and Knowledge Organization, pp. 307–318. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  18. Olszewski, D.: Asymmetric k-Means Algorithm. In: Dobnikar, A., Lotrič, U., Šter, B. (eds.) ICANNGA 2011, Part II. LNCS, vol. 6594, pp. 1–10. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  19. Olszewski, D.: An Experimental Study on Asymmetric Self-Organizing Map. In: Yin, H., Wang, W., Rayward-Smith, V. (eds.) IDEAL 2011. LNCS, vol. 6936, pp. 42–49. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  20. Steinhaus, H.: Sur la Division des Corp Matériels en Parties. Bulletin de l’Académie Polonaise des Sciences, C1. III 4(12), 801–804 (1956)

    MathSciNet  Google Scholar 

  21. Zielman, B., Heiser, W.J.: Models for Asymmetric Proximities. British Journal of Mathematical and Statistical Psychology 49, 127–146 (1996)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Olszewski, D. (2012). k-Means Clustering of Asymmetric Data. In: Corchado, E., Snášel, V., Abraham, A., Woźniak, M., Graña, M., Cho, SB. (eds) Hybrid Artificial Intelligent Systems. HAIS 2012. Lecture Notes in Computer Science(), vol 7208. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28942-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28942-2_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28941-5

  • Online ISBN: 978-3-642-28942-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics