Skip to main content

Dynamics of Networks Evolved for Cellular Automata Computation

  • Conference paper
Hybrid Artificial Intelligent Systems (HAIS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7209))

Included in the following conference series:

Abstract

Cellular Automata (CAs) represent useful and important tools in the study of complex systems and interactions. The problem of finding CA rules able to generate a desired global behavior is considered of great importance and highly challenging. Evolutionary computing offers promising models for addressing this inverse problem of global to local mapping. A related approach less investigated refers to finding robust network topologies that can be used in connection with a simple fixed rule in CA computation. The focus of this study is the evolution and dynamics of small-world networks for the density classification task in CAs. The best evolved networks are analyzed in terms of their tolerance to dynamic network changes. Results indicate a good performance and robustness of the obtained small-world networks for CA density problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chira, C., Gog, A., Lung, R.I., Iclanzan, D.: Complex Systems and Cellular Automata Models in the Study of Complexity. Studia Informatica, vol. LV(4), pp. 33–49 (2010)

    Google Scholar 

  2. Barabasi, A.-L.: Linked: The New Science of Networks. Perseus, New York (2002)

    Google Scholar 

  3. Watts, D.J.: Six degrees: The Science of a Connected Age. Gardner’s Books, New York (2003)

    Google Scholar 

  4. Newman, M.E.J., Girvan, M.: Finding and Evaluating Community Structure in Networks. Physical Review E 69, 026113-1 (2004)

    Google Scholar 

  5. Girvan, M., Newman, M.E.J.: Community Structure in Social and Biological Networks. Proceedings of the National Academy of Sciences of the USA 99, 7821–7826 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Tomassini, M., Giacobini, M., Darabos, C.: Evolution and dynamics of small-world cellular automata. Complex Systems 15, 261–284 (2005)

    MathSciNet  MATH  Google Scholar 

  7. Darabos, C., Tomassini, M., Di Cunto, F., Provero, P., Moore, J.H., Giacobini, M.: Toward robust network based complex systems: from evolutionary cellular automata to biological models. Intelligenza Artificiale 5(1), 37–47 (2011)

    Google Scholar 

  8. Watts, D.J.: Small Worlds: The Dynamics of Networks Between Order and Randomness. Princeton University Press, Princeton (1999)

    Google Scholar 

  9. Watts, D.J., Strogatz, S.H.: Collective dynamics of ’smallworld’ networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  10. Darabos, C., Giacobini, M., Tomassini, M.: Performance and Robustness of Cellular Automata Computation on Irregular Networks. Advances in Complex Systems 10, 85–110 (2007)

    Article  MATH  Google Scholar 

  11. Wolfram, S.: Theory and Applications of Cellular Automata. Advanced series on complex systems, 9128. World Scientific Publishing (1986)

    Google Scholar 

  12. Mitchell, M., Crutchfield, J.P., Das, R.: Evolving cellular automata with genetic algorithms: A review of recent work. In: Proceedings of the First International Conference on Evolutionary Computation and Its Applications (EvCA 1996). Russian Academy of Sciences (1996)

    Google Scholar 

  13. Juille, H., Pollack, J.B.: Coevolving the ’ideal’ trainer: Application to the discovery of cellular automata rules. In: Proceedings of the Third Annual Conference on Genetic Programming (1998)

    Google Scholar 

  14. Tomassini, M., Venzi, M.: Evolution of Asynchronous Cellular Automata for the Density Task. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 934–943. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  15. Mitchell, M., Thomure, M.D., Williams, N.L.: The role of space in the Success of Coevolutionary Learning. In: Proceedings of ALIFE X - The Tenth International Conference on the Simulation and Synthesis of Living Systems (2006)

    Google Scholar 

  16. Oliveira, G.M.B., Martins, L.G.A., de Carvalho, L.B., Fynn, E.: Some investigations about synchronization and density classification tasks in one-dimensional and two-dimensional cellular automata rule spaces. Electron. Notes Theor. Comput. 252, 121–142 (2009)

    Article  Google Scholar 

  17. Pagie, L., Mitchell, M.: A comparison of evolutionary and coevolutionary search. Int. J. Comput. Intell. Appl. 2(1), 53–69 (2002)

    Article  Google Scholar 

  18. Land, M., Belew, R.K.: No perfect two-state cellular automata for density classification exists. Physical Review Letters 74(25), 5148–5150 (1995)

    Article  Google Scholar 

  19. Das, R., Mitchell, M., Crutchfield, J.P.: A Genetic Algorithm Discovers Particle-Based Computation in Cellular Automata. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN 1994. LNCS, vol. 866, pp. 344–353. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  20. Gog, A., Chira, C.: Cellular Automata Rule Detection Using Circular Asynchronous Evolutionary Search. In: Corchado, E., Wu, X., Oja, E., Herrero, Á., Baruque, B. (eds.) HAIS 2009. LNCS, vol. 5572, pp. 261–268. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  21. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press (1992)

    Google Scholar 

  22. Juille, H., Pollack, J.B.: Coevolutionary learning and the design of complex systems. Advances in Complex Systems 2(4), 371–394 (2000)

    Article  Google Scholar 

  23. de Oliveira, P.P.B., Bortot, J.C., Oliveira, G.: The best currently known class of dynamically equivalent cellular automata rules for density classification. Neurocomputing 70(1-3), 35–43 (2006)

    Article  Google Scholar 

  24. Wolz, D., de Oliveira, P.P.B.: Very effective evolutionary techniques for searching cellular automata rule spaces. Journal of Cellular Automata 3, 289–312 (2008)

    MathSciNet  MATH  Google Scholar 

  25. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Kluwer Academic Publishers, Boston (1989)

    MATH  Google Scholar 

  26. Dumitrescu, D., Lazzerini, B., Jain, L.C., Dumitrescu, A.: Evolutionary Computation. CRC Press, Boca Raton (2000)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gog, A., Chira, C. (2012). Dynamics of Networks Evolved for Cellular Automata Computation. In: Corchado, E., Snášel, V., Abraham, A., Woźniak, M., Graña, M., Cho, SB. (eds) Hybrid Artificial Intelligent Systems. HAIS 2012. Lecture Notes in Computer Science(), vol 7209. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28931-6_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28931-6_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28930-9

  • Online ISBN: 978-3-642-28931-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics