Skip to main content

Ordinal Classification Using Hybrid Artificial Neural Networks with Projection and Kernel Basis Functions

  • Conference paper
Book cover Hybrid Artificial Intelligent Systems (HAIS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7209))

Included in the following conference series:

Abstract

Many real life problems require the classification of items into naturally ordered classes. These problems are traditionally handled by conventional methods intended for the classification of nominal classes, where the order relation is ignored. This paper proposes a hybrid neural network model applied to ordinal classification using a possible combination of projection functions (product unit, PU) and kernel functions (radial basis function, RBF) in the hidden layer of a feed-forward neural network. A combination of an evolutionary and a gradient-descent algorithms is adapted to this model and applied to obtain an optimal architecture, weights and node typology of the model. This combined basis function model is compared to the corresponding pure models: PU neural network, and the RBF neural network. Combined functions using projection and kernel functions are found to be better than pure basis functions for the task of ordinal classification in several datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asuncion, A., Newman, D.: UCI machine learning repository (2007), http://www.ics.uci.edu/~mlearn/MLRepository.html

  2. Baccianella, S., Esuli, A., Sebastiani, F.: Evaluation measures for ordinal regression. In: Proceedings of the Ninth International Conference on Intelligent Systems Design and Applications (ISDA 2009), Pisa, Italy (December 2009)

    Google Scholar 

  3. Bishop, C.M.: Pattern Recognition and Machine Learning. Information Science and Statistics, 1st edn. Springer, Heidelberg (2006)

    Google Scholar 

  4. Bishop, C.: Improving the generalization properties of radial basis function neural networks. Neural Computation 8, 579–581 (1991)

    Article  MathSciNet  Google Scholar 

  5. Castro, L.N., Hruschka, E.R., Campello, R.J.G.B.: An evolutionary clustering technique with local search to design rbf neural network classifiers. In: Proceedings of the IEEE International Joint Conference on Neural Networks, pp. 2083–2088 (2004)

    Google Scholar 

  6. Chauvin, Y., Rumelhart, D.E.: Backpropagation: Theory, Architectures, and Applications. Lawrence Erlbaum Associates, Inc., Mahwah (1995)

    Google Scholar 

  7. Chu, W., Ghahramani, Z.: Gaussian processes for ordinal regression. Journal of Machine Learning Research 6, 1019–1041 (2005)

    MathSciNet  MATH  Google Scholar 

  8. Cohen, S., Intrator, N.: A hybrid projection-based and radial basis function architecture: initial values and global optimisation. Pattern Analysis & Applications 5, 113–120 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7, 1–30 (2006)

    MATH  Google Scholar 

  10. Donoho, D.: Projection-based approximation and a duality with kernel methods. The Annals of Statistics 5, 58–106 (1989)

    Article  MathSciNet  Google Scholar 

  11. Fleiss, J.L., Cohen, J., Everitt, B.S.: Large sample standard errors of kappa and weighted kappa. Psychological Bulletin 72(5), 323–327 (1969)

    Article  Google Scholar 

  12. Fletcher, R., Reeves, C.M.: Function minimization by conjugate gradients. Computer Journal 7, 149–154 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  13. Friedman, M.: A comparison of alternative tests of significance for the problem of m rankings. Annals of Mathematical Statistics 11(1), 86–92 (1940)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gutiérrez, P.A., Hervás-Martínez, C., Carbonero-Ruz, M., Fernandez, J.C.: Combined projection and kernel basis functions for classification in evolutionary neural networks. Neurocomputing 27(13-15), 2731–2742 (2009)

    Article  Google Scholar 

  15. Gutiérrez, P.A., Lopez-Granados, F., Peña-Barragán, J.M., Jurado-Expósito, M., Gómez-Casero, M.T., Hervás-Martínez, C.: Mapping sunflower yield as affected by Ridolfia segetum patches and elevation by applying evolutionary product unit neural networks to remote sensed data. Computers and Electronics in Agriculture 60(2), 122–132 (2008)

    Article  Google Scholar 

  16. Hecht-Nielsen, R.: Neurocomputing. Addison-Wesley (1990)

    Google Scholar 

  17. Hervás-Martínez, C., Garcia-Gimeno, R.M., Martínez-Estudillo, A.C., Martínez-Estudillo, F.J., Zurera-Cosano, G.: Improving microbial growth prediction by product unit neural networks. Journal of Food Science 71(2), M31–M38 (2006)

    Article  Google Scholar 

  18. Igel, C., Hüsken, M.: Empirical evaluation of the improved rprop learning algorithms. Neurocomputing 50(6), 105–123 (2003)

    Article  MATH  Google Scholar 

  19. Ishibuchi, H., Yoshida, T., Murata, T.: Balance between genetic search and local search in hybrid evolutionary multi-criterion optimization algorithms. IEEE Transactions on Evolutionary Computation 7(2), 204–223 (2003)

    Article  Google Scholar 

  20. Koza, J.R., Rice, J.P.: Genetic generation of both the weights and architecture for a neural network. In: Proceedings of International Joint Conference on Neural Networks, vol. 2, pp. 397–404. IEEE Press, Seattle (1991)

    Google Scholar 

  21. Lee, S.H., Hou, C.L.: An art-based construction of RBF networks. IEEE Transactions on Neural Networks 13(6), 1308–1321 (2002)

    Article  Google Scholar 

  22. Li, L., Lin, H.T.: Ordinal Regression by Extended Binary Classification. In: Advances in Neural Information Processing Systems, vol. 19, pp. 865–872 (2007)

    Google Scholar 

  23. Lievens, S., Baets, B.D.: Supervised ranking in the weka environment. Information Sciences 180(24), 4763–4771 (2010), http://www.sciencedirect.com/science/article/pii/S0020025510002756

    Article  MathSciNet  MATH  Google Scholar 

  24. Lippmann, R.P.: Pattern classification using neural networks. IEEE Transactions on Neural Networks 27, 47–64 (1989)

    Google Scholar 

  25. Martínez-Estudillo, A.C., Martínez-Estudillo, F.J., Hervás-Martínez, C., García, N.: Evolutionary product unit based neural networks for regression. Neural Networks 19(4), 477–486 (2006)

    Article  MATH  Google Scholar 

  26. McCullagh, P.: Regression models for ordinal data (with discussion). Journal of the Royal Statistical Society 42(2), 109–142 (1980)

    MathSciNet  MATH  Google Scholar 

  27. PASCAL: Pascal (pattern analysis, statistical modelling and computational learning) machine learning benchmarks repository (2011), http://mldata.org/

  28. Schmitt, M.: On the complexity of computing and learning with multiplicative neural networks. Neural Computation 14, 241–301 (2001)

    Article  Google Scholar 

  29. Yao, X.: Evolving artificial neural networks. Proceedings of the IEEE 87(9) (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dorado-Moreno, M., Gutiérrez, P.A., Hervás-Martínez, C. (2012). Ordinal Classification Using Hybrid Artificial Neural Networks with Projection and Kernel Basis Functions. In: Corchado, E., Snášel, V., Abraham, A., Woźniak, M., Graña, M., Cho, SB. (eds) Hybrid Artificial Intelligent Systems. HAIS 2012. Lecture Notes in Computer Science(), vol 7209. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28931-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28931-6_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28930-9

  • Online ISBN: 978-3-642-28931-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics