Skip to main content

Part of the book series: Adaptation, Learning, and Optimization ((ALO,volume 14))

Abstract

In this chapter we describe Markovian Optimisation Algorithm (MOA), one of the recent developments in MN based EDA. It uses the local Markov property to model the dependency and directly sample from it without needing to approximate a complex join probability distribution model. MOA has a much simpler workflow in comparison to its global property based counter parts, since expensive processes to finding cliques, and building and estimating clique potential functions are avoided. The chapter is intended as an introductory chapter, and describes the motivation and the workflow of MOA. It also reviews some of the results obtained with it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alden, M.A.: MARLEDA: Effective Distribution Estimation Through Markov Random Fields. PhD thesis, Faculty of the Graduate Schoool, University of Texas at Austin, USA (December 2007)

    Google Scholar 

  2. Baluja, S., Davies, S.: Using optimal dependency-trees for combinatorial optimization: Learning the structure of the search space. In: Proceedings of the 14th International Conference on Machine Learning, pp. 30–38. Morgan Kaufmann (1997)

    Google Scholar 

  3. Besag, J.: Spatial interactions and the statistical analysis of lattice systems (with discussions). Journal of the Royal Statistical Society 36, 192–236 (1974)

    MathSciNet  MATH  Google Scholar 

  4. Echegoyen, C., Lozano, J.A., Santana, R., Larrañaga, P.: Exact Bayesian network learning in estimation of distribution algorithms. In: Proceedings of the 2007 Congress on Evolutionary Computation CEC 2007, pp. 1051–1058. IEEE Press (2007)

    Google Scholar 

  5. Etxeberria, R., Larrañaga, P.: Global optimization using Bayesian networks. In: Ochoa, A., Soto, M.R., Santana, R. (eds.) Proceedings of the Second Symposium on Artificial Intelligence (CIMAF 1999), Havana, Cuba, pp. 151–173 (1999)

    Google Scholar 

  6. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. In: Fischler, M.A., Firschein, O. (eds.) Readings in Computer Vision: Issues, Problems, Principles, and Paradigms, pp. 564–584. Kaufmann, Los Altos (1987)

    Google Scholar 

  7. Goldberg, D.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley (1989)

    Google Scholar 

  8. Henrion, M.: Propagating uncertainty in Bayesian networks by probabilistic logic sampling. In: Lemmer, J.F., Kanal, L.N. (eds.) Uncertainty in Artificial Intelligence 2, pp. 149–163. North-Holland, Amsterdam (1988)

    Google Scholar 

  9. Kikuchi, R.: A Theory of Cooperative Phenomena. Physical Review 81, 988–1003 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  10. Larrañaga, P., Etxeberria, R., Lozano, J.A., Peña, J.M.: Combinatorial optimization by learning and simulation of Bayesian networks. In: Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence, Stanford, pp. 343–352 (2000)

    Google Scholar 

  11. Larrañaga, P., Lozano, J.A.: Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation. Kluwer Academic Publishers (2002)

    Google Scholar 

  12. Lauritzen, S.L.: Graphical Models. Oxford University Press (1996)

    Google Scholar 

  13. Lauritzen, S.L., Spiegelhalter, D.J.: Local computations with probabilities on graphical structures and their application to expert systems. Journal of the Royal Statistical Society B 50, 157–224 (1988)

    MathSciNet  MATH  Google Scholar 

  14. Li, S.Z.: Markov Random Field modeling in computer vision. Springer (1995)

    Google Scholar 

  15. Metropolis, N.: Equations of state calculations by fast computational machine. Journal of Chemical Physics 21, 1087–1091 (1953)

    Article  Google Scholar 

  16. Mitchell, M.: An Introduction To Genetic Algorithms. MIT Press, Cambridge (1997)

    Google Scholar 

  17. Mühlenbein, H., Mahnig, T., Ochoa, A.R.: Schemata, distributions and graphical models in evolutionary optimization. Journal of Heuristics 5(2), 215–247 (1999)

    Article  MATH  Google Scholar 

  18. Mühlenbein, H., Paaß, G.: From Recombination of Genes to the Estimation of Distributions: I. Binary Parameters. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 178–187. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  19. Murphy, K.: Dynamic Bayesian Networks: Representation, Inference and Learning. PhD thesis, University of California, Berkeley (2002)

    Google Scholar 

  20. Murray, I., Ghahramani, Z.: Bayesian Learning in Undirected Graphical Models: Approximate MCMC algorithms. In: Twentieth Conference on Uncertainty in Artificial Intelligence (UAI 2004), Banff, Canada, July 8-11 (2004)

    Google Scholar 

  21. Ochoa, A., Soto, M.R., Santana, R., Madera, J., Jorge, N.: The factorized distribution algorithm and the junction tree: A learning perspective. In: Ochoa, A., Soto, M.R., Santana, R. (eds.) Proceedings of the Second Symposium on Artificial Intelligence (CIMAF 1999), Havana, Cuba, March 1999, pp. 368–377 (1999)

    Google Scholar 

  22. Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufman Publishers, Palo Alto (1988)

    Google Scholar 

  23. Pelikan, M.: Bayesian optimization algorithm: From single level to hierarchy. PhD thesis, University of Illinois at Urbana-Champaign, Urbana, IL, Also IlliGAL Report No. 2002023 (2002)

    Google Scholar 

  24. Pelikan, M., Goldberg, D.E., Cantú–Paz, E.: BOA: The Bayesian Optimization Algorithm. In: Banzhaf, W., et al. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference GECCO 1999, vol. I, pp. 525–532. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  25. Pelikan, M., Sastry, K., Butz, M.V., Goldberg, D.E.: Hierarchical BOA on random decomposable problems. IlliGAL Report No. 2006002, University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory, Urbana, IL (January 2006)

    Google Scholar 

  26. Santana, R.: A Markov Network Based Factorized Distribution Algorithm for Optimization. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) ECML 2003. LNCS (LNAI), vol. 2837, pp. 337–348. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  27. Santana, R.: Estimation of Distribution Algorithms with Kikuchi Approximations. Evolutionary Computation 13, 67–98 (2005)

    Article  Google Scholar 

  28. Santana, R., Bielza, C., Larrañaga, P., Lozano, J.A., Echegoyen, C., Mendiburu, A., Armanñanzas, R., Shakya, S.: MATEDA 2.0: Estimation of distribution algorithms in MATLAB. Journal of Statistical Software 35(7), 1–30 (2010)

    Google Scholar 

  29. Shakya, S.: DEUM: A Framework for an Estimation of Distribution Algorithm based on Markov Random Fields. PhD thesis, The Robert Gordon University, Aberdeen, UK (April 2006)

    Google Scholar 

  30. Shakya, S., Brownlee, A., McCall, J., Fournier, F., Owusu, G.: DEUM – A Fully Multivariate EDA Based on Markov Networks. In: Chen, Y.-p. (ed.) Exploitation of Linkage Learning. ALO, vol. 3, pp. 71–93. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  31. Shakya, S., McCall, J.: Optimisation by Estimation of Distribution with DEUM framework based on Markov Random Fields. International Journal of Automation and Computing 4, 262–272 (2007)

    Article  Google Scholar 

  32. Shakya, S., McCall, J., Brown, D.: Updating the probability vector using MRF technique for a univariate EDA. In: Onaindia, E., Staab, S. (eds.) Proceedings of the Second Starting AI Researchers’ Symposium. Frontiers in Artificial Intelligence and Applications, vol. 109, pp. 15–25. IOS press, Valencia (2004)

    Google Scholar 

  33. Shakya, S., McCall, J., Brown, D.: Using a Markov Network Model in a Univariate EDA: An Emperical Cost-Benefit Analysis. In: Proceedings of Genetic and Evolutionary Computation COnference (GECCO 2005), pp. 727–734. ACM, Washington, D.C. (2005)

    Chapter  Google Scholar 

  34. Shakya, S., McCall, J., Brown, D.: Solving the Ising spin glass problem using a bivariate EDA based on Markov Random Fields. In: Proceedings of IEEE Congress on Evolutionary Computation (IEEE CEC 2006), pp. 3250–3257. IEEE Press, Vancouver (2006)

    Google Scholar 

  35. Shakya, S., Santana, R.: An EDA based on local Markov property and Gibbs sampling. In: Proceedings of Genetic and Evolutionary Computation COnference (GECCO 2008). ACM Press, Atlanta (2008)

    Google Scholar 

  36. Shakya, S., Santana, R.: A markovianity based optimisation algorithm. Technical Report Technical Report EHU-KZAA-IK-3/08, Department of Computer Science and Artificial Intelligence, University of the Basque Country (September 2008)

    Google Scholar 

  37. Shakya, S., Santana, R.: A markovianity based optimisation algorithm. Genetic Programming and Evolvable Machines (2011) (in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddhartha Shakya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Shakya, S., Santana, R. (2012). MOA - Markovian Optimisation Algorithm. In: Shakya, S., Santana, R. (eds) Markov Networks in Evolutionary Computation. Adaptation, Learning, and Optimization, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28900-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28900-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28899-9

  • Online ISBN: 978-3-642-28900-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics