Skip to main content

Complex Automata as a Novel Conceptual Framework for Modeling Biomedical Phenomena

  • Chapter
Advances in Intelligent Modelling and Simulation

Part of the book series: Studies in Computational Intelligence ((SCI,volume 416))

Abstract

We show that the complex automata (CxA) paradigm can serve as a robust general framework which can be applied for developing advanced models of biological systems. CxA integrates particle method (PM) and cellular automata (CA) computational techniques. Instead of developing complicated multi-scale models which consist of many submodels representing various scales coupled by a scales-bridging mechanism, we propose here a uniform, single scale, coarse grained computational framework for which information about finer scales is inscribed in CA rules and particle interactions. We demonstrate that our approach can be especially attractive for modeling biological systems, e.g., intrinsically complex phenomena of growth such as cancer proliferation fueled by the process of angiogenesis and Fusarium Graminearum wheat infection. We show that these systems can be discretized and represented by an ensemble of moving particles, which states are defined by a finite set of attributes. The particles may represent spherical cells and other non-spherical fragments of more sophisticated structures, such as, transportation system (vasculature, capillaries), pathogen individuals, neural network fragments etc. The particles interact with their closest neighbors via semi-harmonic central forces mimicking mechanical resistance of the cell walls. The particle motion is governed by both the Newtonian laws and cellular automata rules employing the attributes (states) of neighboring cells. CA rules may reflect e.g., cell life-cycle influenced by accompanying biological processes while the laws of particle dynamics and the character of collision operators simulate the mechanical properties of the system. The ability of mimicking mechanical interactions of tumor with the rest of tissue and penetration properties of Fusarium graminearum, confirms that our model can reproduce realistic 3-D dynamics of these complex biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, F., Broughton, J., Bernstein, N., Kaxiras, E.: Spanning the length scales in dynamic simulation. Computers in Physics 12(6) (1998)

    Google Scholar 

  2. Beazley, D.M., Lomdahl, P.S., Gronbech-Jansen, N., Giles, R., Tomayo, P.: Parallel algorithms for short range molecular dynamics. In: Annual Reviews of Computational Physics, vol. III, pp. 119–175. World Scientific (1996)

    Google Scholar 

  3. Bellomo, N., Angelis de, E., Preziosi, L.: Multiscale modeling and mathematical problems related to tumor evolution and medical therapy. J. Theor. Med. 5(2), 111–136 (2003)

    Article  MATH  Google Scholar 

  4. Brown, N.A., Urban, M., Meene van de, A.M.L., Hammond-Kosack, K.E.: The infection biology of fusarium graminearum: Defining the pathways of spikelet to spikelet colonisation in wheat ears. Fungal Biology 114(7), 555–571 (2010)

    Article  Google Scholar 

  5. Castorina, P., Carco, D., Guiot, C., Deisboeck, T.: Tumor growth instability and its implications for chemotherapy. Cancer Res. 69(21) (2009)

    Google Scholar 

  6. Chaplain, M.A.J.: Mathematical modelling of angiogenesis. J. Neuro.-Oncol. 50, 37–51 (2000)

    Article  Google Scholar 

  7. Chopard, B., Droz, M.: Cellular Automata Modeling of Physical Systems. Cambridge University Press (1998)

    Google Scholar 

  8. Berge van den, L.A., Selten, F.M., Wiegerinck, W., Duane, G.S.: A multi-model ensemble method that combines imperfect models through learning. Earth Syst. Dynam. 2, 161–177 (2011)

    Article  Google Scholar 

  9. Dzwinel, W.: Virtual particles and search for global minimum. Future Generation Computer Systems 12, 371–389 (1997)

    Article  Google Scholar 

  10. Dzwinel, W., Alda, W., Kitowski, J., Yuen, D.A.: Using discrete particles as a natural solver in simulating multiple-scale phenomena. Molecular Simulation 20(6), 361–384 (2000)

    Article  Google Scholar 

  11. Dzwinel, W., Alda, W., Pogoda, M., Yuen, D.A.: Turbulent mixing in the microscale. Physica D 137, 157–171 (2000)

    Article  Google Scholar 

  12. Dzwinel, W., Alda, W., Yuen, D.A.: Cross-scale numerical simulations using discrete-particle models. Molecular Simulation 22, 397–418 (1999)

    Article  Google Scholar 

  13. Dzwinel, W., Yuen, D.A.: Dissipative particle dynamics of the thin-film evolution in mesoscale. Molecular Simulation 22, 369–395 (1999)

    Article  Google Scholar 

  14. Dzwinel, W., Yuen, D.A., Boryczko, K.: Bridging diverse physical scales with the discrete-particle paradigm in modeling colloidal dynamics with mesoscopic features. Chemical Engineering Sci. 61, 2169–2185 (2006)

    Article  Google Scholar 

  15. Espanol, P.: Fluid particle model. Phys. Rev. E 57, 2930–2948 (1998)

    Article  Google Scholar 

  16. Espanol, P., Serrano, M.: Dynamical regimes in dpd. Physical Review E 59(6), 6340–6347 (1999)

    Article  Google Scholar 

  17. Flekkoy, E.G., Coveney, P.V.: Foundations of dissipative particle dynamics. Physics Review Letters 83, 1775–1778 (1999)

    Article  Google Scholar 

  18. Folkman, J.: Tumor angiogenesis, therapeutic implications. N. Engl. J. Med. 285, 1182–1186 (1971)

    Article  Google Scholar 

  19. Fuchslin, R.M., Eriksson, A., Fellermann, H., Ziock, H.J.: Coarse-graining and scaling in dissipative particle dynamics. J. Chem. Phys. 130 (2009)

    Google Scholar 

  20. German, T.C., Kadau, K.: Trillion-atom molecular dynamics becomes a reality. International Journal of Modern Physics C 19(9), 1315–1319 (2008)

    Article  Google Scholar 

  21. Helbing, D., Farkas, I.J., Vicsek, T.: Simulating dynamical features of escape panic. Nature 407, 487–490 (2000)

    Article  Google Scholar 

  22. Hoekstra, A.G., Lorenz, E., Falcone, J.-L., Chopard, B.: Towards a Complex Automata Framework for Multi-scale Modeling: Formalism and the Scale Separation Map. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2007. LNCS, vol. 4487, pp. 922–930. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  23. Hoogerbrugge, P.J., Koelman, J.: Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhysics Letters 19(3), 155–160 (1992)

    Article  Google Scholar 

  24. Israeli, N., Goldenfeld, N.: Coarse-graining of cellular automata, emergence, and the predictability of complex systems. Phys. Rev. E 73(2) (2006)

    Google Scholar 

  25. Jemal, A., Siegel, R., Jiaquan, X., Ward, E.: Cancer statistics 2010. CA Cancer J. Clin. 60, 277–300 (2010)

    Article  Google Scholar 

  26. Libersky, L.D., Petschek, A.G., Carney, T.C., Hipp, J.R., Allahdadi, F.A.: High strain lagrangian hydrodynamics. Journal of Computational Physics 109(1), 67–73 (1993)

    Article  MATH  Google Scholar 

  27. Lowengrub, J.S., Frieboes, H.B., Jin, F., Chuang, Y.L., Li, X., Macklin, P., Wise, S.M., Cristini, V.: Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity 23 (2010)

    Google Scholar 

  28. Mantzaris, N., Webb, S., Othmer, H.G.: Mathematical modeling of tumor-induced angiogenesis. J. Math. Biol. 49(2), 1416–1432 (2004)

    Article  MathSciNet  Google Scholar 

  29. Marsh, C., Backx, G., Ernst, M.H.: Static and dynamic properties of dissipative particle dynamics. Physical Review E 56 (1997)

    Google Scholar 

  30. Miller, S.S., Chabota, D.M.P., Ouellet, T., Harrisa, L.J., Fedak, G.: Use of a fusarium graminearum strain transformed with green fluorescent protein to study infection in wheat (triticum aestivum). Canadian Journal of Plant Pathology 26(4), 453–463 (2004)

    Article  Google Scholar 

  31. Nakano, A., Bachlechner, M., Campbell, T., Kalia, R., Omeltchenko, A., Tsuruta, K., Vashishta, P., Ogata, S., Ebbsjo, I., Madhukar, A.: Atomistic simulation of nanostructured materials. IEEE Computational Science and Engineering 5(4), 68–78 (1998)

    Article  Google Scholar 

  32. Nakano, A., Bachlechner, M.E., Kalia, R.K., Lidorikis, E., Vashishta, P.: Multiscale simulation of nanosystems. Computing in Science and Engineering 3(4) (2001)

    Google Scholar 

  33. Nigiel, G.: Agent-based Models. Sage Publications, London (2007)

    Google Scholar 

  34. Oron, A., Davis, S.H., Bankoff, S.G.: Long-scale evolution of thin films. Rev. of Modern Phys. 69(3), 931–980 (1997)

    Article  Google Scholar 

  35. Pelechano, N., Badler, N.I.: Improving the realism of agent movement for high density crowd simulation, http://www.lsi.upc.edu/npelechano/MACES/MACES.htm

  36. Preziozi, L.: Cancer modelling and simulation. Chapman & Hall/CRC Mathematical Biology & Medicine (2003)

    Google Scholar 

  37. Raza, A., Franklin, M.J.: Pericytes and vessel maturation during tumor angiogenesis and metastasis. Am. J. Hematol. 85(8), 593–598 (2010)

    Article  Google Scholar 

  38. Serrano, M., Espanol, P.: Thermodynamically consistent mesoscopic fluid particle model. Phys. Rev. E 64(4) (2001)

    Google Scholar 

  39. Sloot, P., Kroc, J.: Complex systems modeling by cellular automata. In: Encyclopedia of Artificial Intelligence, pp. 353–360. Informatio SCI, Harshey, New York (2009)

    Google Scholar 

  40. Vasilyev, O.V., Bowman, K.: Second-generation wavelet collocation method for the solution of partial differential equations. Journal of Computational Physics 165(2), 660–693 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  41. Vasilyev, O.V., Zheng, X., Dzwinel, W., Dudek, A.Z., Yuen, D.A.: Collaborative research: Virtual melanoma — a predictive multiscale tool for optimal cancer therapy. NiH proposal (2011)

    Google Scholar 

  42. Wcisło, R., Dzwinel, W.: Particle Based Model of Tumor Progression Stimulated by the Process of Angiogenesis. In: Bubak, M., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2008, Part II. LNCS, vol. 5102, pp. 177–186. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  43. Wcisło, R., Dzwinel, W.: Particle Model of Tumor Growth and Its Parallel Implementation. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2009. LNCS, vol. 6067, pp. 322–331. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  44. Wcisło, R., Dzwinel, W., Yuen, D.A., Dudek, A.: A new model of tumor progression based on the concept of complex automata driven by particle dynamics. J. Mol. Mod. 15(12), 1517–1539 (2009)

    Article  Google Scholar 

  45. Wcisło, R., Gosztyła, P., Dzwinel, W.: N-body parallel model of tumor proliferation. In: Proceedings of Summer Computer Simulation Conference, Ottawa, Canada, July 11-14, pp. 160–167 (2010)

    Google Scholar 

  46. Wolfram, S.: A New Kind of Science. Wolfram Media Incorporated (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Witold Dzwinel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Dzwinel, W. (2012). Complex Automata as a Novel Conceptual Framework for Modeling Biomedical Phenomena. In: Byrski, A., Oplatková, Z., Carvalho, M., Kisiel-Dorohinicki, M. (eds) Advances in Intelligent Modelling and Simulation. Studies in Computational Intelligence, vol 416. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28888-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28888-3_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28887-6

  • Online ISBN: 978-3-642-28888-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics