Skip to main content

Self-Evolvability for Biosystems

  • Chapter
Book cover Self-Evolvable Systems

Part of the book series: Understanding Complex Systems ((UCS))

  • 1217 Accesses

Abstract

The straightforwardness with which biosystems solve complex problems suggests adopting the strategies developed in nature to face evergrowing complexity for other systems.

Hypercubes for genetic code, hypercycles as a principle of self-organization, and NK-models of evolution describing genotype fitness landscape are presented.

The hierarchy of structure, function, dynamics, within spatial and temporal brain scales is characterized by the K-set models.

The correlation with differential models, entropy criteria and bio-inspired computing methods as, autonomic, and organic computing is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ardell, D.H., Sella, G.: No accident: genetic codes freeze in error-correcting patterns of the standard genetic code. Philos. Trans. R. Soc. London B. Biol. Sci. 357(1427), 1625–1642 (2002)

    Article  Google Scholar 

  • Bauer, B., Kasinger, H.: AOSE and organic computing-how can they benefits from each other. Position paper, AOSE III. Springer (2006)

    Google Scholar 

  • Benyo, B., Biro, J.C., Benyo, Z.: Codes in the codons: Construction of a codon/amino acid periodic table and a study of the nature of specific nucleic acid-protein interactions. In: Proceedings of the 26th Annual International Conference of the IEEE EMBS, San Francisco, pp. 2860–2863 (2004)

    Google Scholar 

  • Bertman, M.O., Jungck, J.R.: Group graph of the genetic code. The J. of Heredity 70, 379–384 (1979)

    Google Scholar 

  • Calinescu, R., Kwiatkowska, M.: CADS*: Computer-Aided Development of Self-* Systems. In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS, vol. 5503, pp. 421–424. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  • Engstrom, D., Kelso, J.: Coordination dynamics of the complementary nature. Gestalt Theory 30(2), 121–134 (2008)

    Google Scholar 

  • Eigen, M.: Selforganization of Matter and the Evolution of Biological Macromolecules. Naturwissenschaften 58(10), 465–523 (1971)

    Article  Google Scholar 

  • Eigen, M.: Viral Quasispecies. Scientific Am. 269, 42–49 (1993)

    Article  Google Scholar 

  • Eigen, M.: Viruses: Evolution, Propagation and Defense. Nutrition Reviews 58(2), 5–16 (2000)

    Google Scholar 

  • Eigen, M., Schuster, P.: The hypercycle a principle of natural self-organization. Springer, Berlin (1979)

    Google Scholar 

  • Eigen, M., McCaskill, J., Schuster, P.: Molecular quasispecies. J. Phys. Chem. 92, 6881–6891 (1988)

    Article  Google Scholar 

  • Findley, G.L., Findley, A.M., McGlynn, S.P.: Symmetry characteristics of the genetic code. Proc. Natl. Acad. Sci. USA 79, 7061–7065 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  • Frappat, L., Sciarrino, A., Sorba, P.: Theoretical Prevision of Physical-Chemical Properties of Amino Acids from Genetic Code (2000), http://arxiv.org/list/physics/0007034

  • Freeman, W.J.: Mass Action in the Nervous System. Academic Press, New York (1975)

    Google Scholar 

  • Freeman, W.J.: Neurodynamics. An Exploration of Mesoscopic Brain Dynamics. Spinger, London UK (2000)

    MATH  Google Scholar 

  • Freeman, W.J.: Proposed cortical “shutter” mechanism in cinematographic perception. In: Perlovsky, L., Kozma, R. (eds.) Neurodynamics of Cognition and Consciousness, pp. 11–38. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  • Grossberg, S.: The complementary brain: A unifying view of brain specialization and modularity. Trends in Cognitive Sciences 4, 233–246 (2000)

    Article  Google Scholar 

  • Freeman, W.J., Holmes, M.D.: Metastability, instability, and state transition in neocortex. Neural Networks 18(5-6), 497–504 (2005)

    Article  MATH  Google Scholar 

  • Hofmeyr, J.-H.: The biochemical factory that autonomously fabricates itself: a systems biological view of the living cell. In: Boogard, F., Bruggeman, F., Hofmeyr, J.-H., Westerhoff, H. (eds.) Systems Biology: Philosophical Foundations. Elsevier (2007)

    Google Scholar 

  • Ji, S.: Complementarism: A biology-based philosophical framework to integrate western science and eastern tao. In: Proceeding of the 16th International Congress of Psychoterapy, pp. 518–548 (1995)

    Google Scholar 

  • Jimenez-Montano, M.A.: Protein evolution drives the evolution of the genetic code and vice versa. Biosystems 54, 47–64 (1999)

    Article  Google Scholar 

  • Jimenez-Montano, M.A., de la Mora-Basanez, R., Poschel, T.: The hypercube structure of the genetic code explains conservative and non-conservative amino acid substitutions in vivo and in vitro. Biosystems 39, 117–125 (1996)

    Article  Google Scholar 

  • Jimenez-Sanchez, A.: On the Origin and Evolution of the Genetic Code. J. Mol. Evol. 41, 712–716 (1995)

    Article  Google Scholar 

  • Kauffman, S.A.: The origins of order: Self-organization and selection in evolution. Oxford University Press, New York (1993)

    Google Scholar 

  • Kauffman, S.: At home in the universe: The search for laws of self-organization and complexity. Oxford University Press, New York (1995)

    Google Scholar 

  • Kelso, J.A.S., Tognoli, E.: Toward a Complementary Neuroscience: Metastable Coordination Dynamics of the Brain. In: Murphy, N., Ellis, G.F.R., O’Connor, T. (eds.) Downward Causation and the Neurobiology of Free Will. UCS, vol. 3, pp. 103–124. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  • Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Computer 36(1), 41–50 (2003)

    Article  Google Scholar 

  • Koonin, E.V., Novozhilov, A.S.: Origin and evolution of the genetic code: The universal enigma. IUBMB Life 61(2), 99–111 (2009)

    Article  Google Scholar 

  • Kuhn, H., Kuhn, C.: Diversified world: drive of life’s origin? Angew. Chem. International 42, 262–266 (2003)

    Article  Google Scholar 

  • Kuhn, H., Waser, J.: Hypothesis on the origin of genetic code. FEBS Letters 352, 259–264 (1994)

    Article  Google Scholar 

  • Moretti, A.: The Geometry of Logical Opposition. PhD. Thesis. University of Neuchâtel, Switzerland (2009)

    Google Scholar 

  • Patee, H.: The Physics and Metaphysics of Biosemiotics. Journal of Biosemiotics 1, 281–301 (2005)

    Google Scholar 

  • Pearse, E.P.J.: Canonical self-similar tilings by iterated function systems. Indiana Univ. Math. J. 56, 3151–3170 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Schöler, T., Müller-Schloer, C.: An Observer/Controller Architecture for Adaptive Reconfigurable Stacks. In: Beigl, M., Lukowicz, P. (eds.) ARCS 2005. LNCS, vol. 3432, pp. 139–153. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  • Schuster, P.: A testable genotype-phenotype map: Modeling evolution of RNA molecules. In: Läassig, M., Valleriani, A. (eds.) Biological Evolution and Statistical Physics, pp. 56–83. Springer, Berlin (2002)

    Google Scholar 

  • Sole, R.V., Sardanyes, J., Díez, J., Mas, A.: Information catastrophe in RNA viruses through replication thresholds. J. Theor. Biol. 240, 353–359 (2006)

    Article  Google Scholar 

  • Sterritt, R., Hinchey, M.: Autonomic Computing – Panacea or Poppycock? In: The 12th IEEE International Conference and Workshops on the Engineering of Computer-Based Systems, pp. 535–539 (2005)

    Google Scholar 

  • Taylor, W.R.: The classification of amino acid conservation. J. Theor. Biol. 119, 205–218 (1986)

    Article  Google Scholar 

  • Trumler, W., Bagci, F., Petzold, J., Ungerer, T.: Towards an organic middleware for the smart dooplate project. GI Jahrestagung (2), 626–630 (2004)

    Google Scholar 

  • Von Neumann, J.: Theory of Self-Reproducing Automata. University of Illinois Press, Urbana (1966)

    Google Scholar 

  • Wilhelm, T., Nikolajewa, S.L.: A new classification schema of the genetic code. J. Mol. Evol. 59, 598–605 (2004)

    Article  Google Scholar 

  • Wolynes, P., Onuchic, J.N., Thirumalai, D.: Navigating the folding routes. Science 267, 1619–1620 (1995)

    Article  Google Scholar 

  • Würtz, R.P. (ed.): Organic Computing: Series: Understanding Complex Systems. Springer (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Octavian Iordache .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

Iordache, O. (2012). Self-Evolvability for Biosystems. In: Self-Evolvable Systems. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28882-1_6

Download citation

Publish with us

Policies and ethics