Skip to main content

Impact Cratering from an Indian Perspective

  • Chapter
  • First Online:
Earth System Processes and Disaster Management

Part of the book series: Society of Earth Scientists Series ((SESS))

Abstract

There are only 176 known terrestrial meteoritic impact structures and only two confirmed impact structures are known from India till date. The Asian countries like, Japan and China reported their first respective confirmed meteoritic impact structure in 2010. The 656 ± 81 ka old Lonar crater, Maharashtra, is a 1.8 km diameter, bowl-shaped simple structure, and the recently discovered Dhala impact structure, Madhya Pradesh, is a complex structure with a characteristic central uplift. The 25 km diameter Dhala impact structure is the third oldest known on Earth. It is asymmetrically disposed with respect to its crater margin and comprises a 100 m thick melt sheet. Hitherto, the studies on Ramgarh structure, Rajasthan, have not yielded any diagnostic evidence of meteoritic impact cratering. The confirmation of simple, complex and multi-ring impact structures are made on the basis of mesoscopic and microscopic shock metamorphic features besides the physical and/or chemical signature(s) of the impactor (asteroid or comet). A precise knowledge of the impact diagnostic shock features is essential to discover more impact structures from the Indian landmass. In addition, the study of the impact cratering process is essential for a better understanding of the planetary evolution, landscape modification, and the presence of water and life on Earth. This high energy catastrophic process is also crucial to our understanding of the at least one major world-wide mass extinction event and the formation of some of the large mineral deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Balasundaram MS, Dube A (1973) Ramgarh structure, India. Nature 242:40

    Article  Google Scholar 

  • Bischoff A, Stöffler D (1984) Chemical and structural changes induced by thermal annealing of shocked feldspar inclusions in impact melt rocks from Lappajärvi crater. Finland. J Geophys Res 89:B645–B656

    Article  Google Scholar 

  • Buchner E, Kenkmann T (2008) Upheaval dome, Utah: impact origin confirmed. Geology 36:227–230

    Article  Google Scholar 

  • Carstens H (1975) Thermal history of impact melt rocks in the Fennoscandian shield. Contrib Miner Petrol 50:145–155. doi:10.1007/BF00373334

    Article  Google Scholar 

  • Crawford AR (1972) Possible impact structure in India. Nature 237:98

    Article  Google Scholar 

  • Chatterjee S, Guven N, Yoshinobu A, Donofrio R (2006) Shiva structure: a possible KT boundary impact crater on the western shelf of India. Texas Technical University Natural Science Research Laboratory Special Publication # 50, 39pp

    Google Scholar 

  • Deutsch A, Grieve RAF, Avermann M, Bischoff L, Brockmeyer P, Buhl D, Lakomy R, Müller-Mohr V, Ostermann M, Stöffler D (1995) The Sudbury structure (Ontario, Canada): a tectonically deformed multi-ring impact basin. Geol Rundsch 84:697–709

    Article  Google Scholar 

  • Dietz RS (1947) Meteorite impact suggested by the orientation of shatter-cones at the Kentland, Indiana disturbance. Science 105:42–43

    Article  Google Scholar 

  • Dietz RS (1959) Shatter cones in cryptoexplosion structures (meteorite impact). J Geol 67:496–505

    Article  Google Scholar 

  • Dietz RS (1963) Cryptoexplosion structures: a discussion. Am J Sci 261:650–664

    Article  Google Scholar 

  • Dietz RS (1968) Shatter cones in cryptoexplosion structures. In: French BM, Short NM (eds) Shock metamorphism of natural materials. Mono Book Corporation, Baltimore, pp 267–285

    Google Scholar 

  • Donofrio RR (1997) Survey of hydrocarbon-producing impact structures in North America: exploration results to date and potential for discovery in Precambrian basement rock. Oklahoma. Geol Surv Circular 100:17–29

    Google Scholar 

  • Ferrière L, Koeberl C, Libowitzky E, Reimold WU, Greshake A, Brandstätter F (2010) Ballen quartz and cristobalite in impactites: new investigations. In: Reimold WU, Gibson RL (eds) Large meteorite impacts and planetary evolution IV. Geological Society of America Special Paper 465, pp 609–618. doi:101130/2010.2465(29)

  • Fredriksson K, Dube A, Milton DJ, Balasundaram MS (1973) Lonar lake, India: an impact crater in basalt. Science 180:862–864

    Article  Google Scholar 

  • Fredriksson K, Brenner P, Dube A, Milton D, Mooring C, Nelen J (1979) Petrology, mineralogy, and distribution of Lonar (India) and lunar impact breccias and glasses. Smithsonian Contrib Earth Sci 22:1–12

    Google Scholar 

  • French BM, Koeberl C (2010) The convincing identification of terrestrial meteorite impact structures: what works, what doesn’t and why. Earth Sci Rev 98:123–170

    Google Scholar 

  • French BM, Short NM (1968) Shock metamorphism of natural materials. Mono Book Corporation, Baltimore, 644p

    Google Scholar 

  • French BM (1998) Traces of catastrophe: a handbook of shock-metamorphic effects in terrestrial meteoritic impact structures. LPI contribution no. 954, Lunar and Planetary Institute, Houston, p 120

    Google Scholar 

  • Fudali RR, Milton DJ, Fredriksson K, Dube A (1980) Morphology of Lonar crater, India: comparison and implications. Moon Planets 23:493–515

    Google Scholar 

  • Gasperini L, Alvisi F, Biasini G, Bonatti E, Longo G, Pipan M, Ravaioli M, Serra R (2007) A possible impact crater for the 1908 Tunguska event. Terra Nova 19:245–251

    Google Scholar 

  • Grieve RAF (2005) Economic natural resource deposits at terrestrial impact structures. In: McDonald I, Boyce AJ, Butler IB, Herrington RJ, Polya DA (eds) Mineral deposits and earth evolution, vol 248. Geological Society of London Special Publication, London, pp 1–29

    Google Scholar 

  • Grieve RAF, Langenhorst F, Stöffler D (1996) Shock metamorphism of quartz in nature and experiment: II. Significance in geoscience. Meteorit Planet Sci 31:6–35

    Google Scholar 

  • Grieve RAF, Rupert J, Smith J, Therriault A (1995) The record of terrestrial impact cratering. GSA Today 5:189–196

    Google Scholar 

  • Grieve RAF, Shoemaker EM (1994) The record of past impacts on Earth. In: Gehrels T (ed) Hazards due to comets and asteroids. University of Arizona, Tucson, pp 417–462

    Google Scholar 

  • Grieve RAF, Robertson PB, Dence MR (1981) Constraints on the formation of ring impact structures, based on terrestrial data. In: Schultz PH, Merrill RB (eds) Multi-ring basins: formation and evolution, vol 12A, Proc Lunar Planet Sci. Pergamon, New York, pp 37–57

    Google Scholar 

  • http://www.unb.ca/passc/ImpactDatabase/Age, 25 Apr 2011

  • Jourdan F, Moynier F, Koeberl C (2010) First 40Ar/39Ar age of the Lonar crater: a ~0.65 Ma impact event? 41th Lunar and Planetary Science Conference. The Woodlands, USA. Extended Abstract:1661

    Google Scholar 

  • Kamo SL, Reimold WU, Krogh TE, Colliston WP (1996) A 2.023 Ga age for the Vredefort impact event and a first report of shock metamorphosed zircons in pseudotachylitic breccias and granophyre. Earth Planet Sci Lett 144:369–387

    Google Scholar 

  • Kieffer SW, Schaal RB, Gibbons R, Hörz F, Milton DJ, Dube A (1976) Shocked basalt from Lonar impact crater, India, and experimental analogues. In: Proceedings of the 7th Lunar Science Conference. Lunar Planetary Institute, USA, pp 1391–1412

    Google Scholar 

  • Koeberl C, Farley KA, Peucker-Ehrenbrink B, Sephton MA (2004) Geochemistry of the end-Permian extinction event in Austria and Italy: no evidence for an extraterrestrial component. Geology 32:1053–1056

    Google Scholar 

  • Koeberl C, Reimold UW, Plescia J (2005) BP and Oasis impact structures, Libya: remote sensing and field studies. In: Koeberl C, Henkel H (eds) Impact tectonics. Springer, Berlin, pp 161–190

    Google Scholar 

  • Koeberl C, Reimold WU (2005) Bosumtwi impact crater, Ghana (West Africa): an updated and revised geological map, with explanations, vol 145. Jahrbuch der Geologischen Bundesanstalt, Wien, pp 31–70 (Yearbook of the Austrian Geological Survey) (with map, scale 1:50,000)

    Google Scholar 

  • Koeberl C, Martinez-Ruiz FC (2003) The stratigraphic record of impact events: a short review. In: Koeberl C, Martinez-Ruiz FC (eds) Impact markers in the stratigraphic record. Springer, Heidelberg/Berlin, pp 1–40

    Google Scholar 

  • Kumar PS (2005) Structural effects of meteorite impact on basalt: evidence from Lonar crater, India. J Geophys Res 110. doi:10.1029/2005JB003662

  • Leroux H, Reimold WU, Koeberl C, Hornemann U, Doukhan J-C (1999) Experimental shock deformation in zircon: a transmission electron microscope study. Earth Planet Sci Lett 169:291–301

    Google Scholar 

  • Mallet FR (1869) On the Vindhyan Series, as exhibited in the north-western and central province of India. Mem Geol Surv India 7(Pt. 1):129

    Google Scholar 

  • Maloof AC, Stewart ST, Weiss BP, Soule SA, Swanson-Hysell NL, Louzada KL et al (2010) Geology of Lonar crater, India. Geol Soc Am Bull 122:109–126

    Google Scholar 

  • Master S, Pandit MK (1999) New evidence for an impact origin of Ramgarh Structure, Rajasthan, India (abstract). Meteorit Planet Sci 34(suppl):A 79

    Google Scholar 

  • Melosh HJ (1989) Impact cratering: a geologic process. Oxford University Press, New York, 245 p

    Google Scholar 

  • Milton DJ, Barlow BC, Brett R, Brown AR, Glikson AY, Manwaring EA, Moss FJ, Sedmik ECE, Van Son J, Young GA (1972) Gosses Bluff impact structure, Australia. Science 175:1199–1207

    Google Scholar 

  • Milton DJ, Glikson AY, Brett R (1996) Gosses Bluff – a latest Jurassic impact structure, central Australia. Part I: geological structure, stratigraphy, and origin. AGSO. J Austral Geol Geophys 16:453–486

    Google Scholar 

  • Montanari A, Koeberl C (2000) Impact stratigraphy – the Italian record (Lecture Notes in Earth Sciences), vol 93. Springer, Heidelberg/Berlin, p 346

    Google Scholar 

  • Murali AV, Zolensky ME, Blanchard DP (1987) Tektite-like bodies at Lonar crater, India: implications for the origin of tektites. J Geophys Res 92:E729–E735

    Google Scholar 

  • Nayak VK (1972) Glassy objects (impact glasses), a possible new evidence for meteoritic origin of Lonar crater, Maharashtra State, India. Earth Planet Sci Lett 14:1–6

    Google Scholar 

  • Nayak VK (1993) Maskelynite from the Indian impact crater at Lonar. J Geol Soc India 41:307–312

    Google Scholar 

  • Osae S, Misra S, Koeberl C, Sengupta D (2005) Target rocks, impact glasses and melt rocks from the Lonar impact crater, India: petrography and geochemistry. Meteorit Planet Sci 40:1473–1492

    Google Scholar 

  • Pati JK (2005) The Dhala structure, Bundelkhand Craton, central India – a new large Paleoproterozoic impact structure. Meteorit Planet Sci 40(Supplement):A121

    Google Scholar 

  • Pati JK, Reimold WU (2007) Impact cratering a fundamental process in geoscience and planetary science. J Earth Sys Sci 116:81–96

    Google Scholar 

  • Pati JK, Reimold WU, Koeberl C, Pati P (2008a) The Dhala structure, Bundelkhand craton, central India – eroded remnant of a large Paleoprotrozoic impact structure. Meteorit Planet Sci 43:1383–1398

    Google Scholar 

  • Pati JK, Reimold WU, Koeberl C, Pati P (2008b) Dhala – a new, complex, Paleoproterozoic impact structure in central India, large meteoritic impact and planetary evolution IV, LPI contribution no. 1423, Lunar Planetary Institute, Houston, pp 168–169 (abstract)

    Google Scholar 

  • Pati JK, Reimold WU, Pati P, Umrao RK, Ahmad M (2009) Study of pseudotachylite breccia vein, Dhala impact structure, India. 72nd annual meteoritical society meeting 2009, Nancy, (5187.pdf)

    Google Scholar 

  • Pati JK, Jourdan F, Armstrong RA, Reimold WU, Prakash K (2010) First SHRIMP U-Pb and 40 Ar/39 Ar chronological results from impact melt breccias from the Paleoproterozoic Dhala impact structure, India. In: Reimold WU, Gibson RL (eds) Large meteorite impacts and planetary evolution IV. Geological Society of America Special Paper 465, pp 571–592. doi:101130/2010.2465(27)

  • Pilkington M, Grieve RAF (1992) The geophysical signature of terrestrial impact craters. Rev Geophys 30:161–181

    Google Scholar 

  • Radhakrishnan BP (2005) Some thoughts on planetary impact structure in India and on the importance of their study. J Geol Soc India 66:423–431

    Google Scholar 

  • Ramasamy SM (1987) Evolution of Ramgarh Dome, Rajasthan, India. Rec Geol Surv India 113(7):13–22

    Google Scholar 

  • Ramasamy SM (1995) Evolution of Ramgarh Dome, Rajasthan, India. Mem. Geol Soc India 31: 279–310

    Google Scholar 

  • Reimold WU, Trepmann C, Simonson B (2006) Discussion – impact origin of the Ramgarh structure, Rajasthan: some new evidences, by Sisodia et al. 2006. J Geol Soc India, 68: 561–563

    Google Scholar 

  • Reimold WU, Kelley SP, Sherlock SC, Henkel H, Koeberl C (2005) Laser argon dating of melt breccias from the Siljan impact structure, Sweden: implications for a possible relationship to Late Devonian extinction events. Meteorit Planet Sci 40:591–607

    Google Scholar 

  • Reimold WU, Gibson RL (1996) Geology and evolution of the Vredefort impact structure, South Africa. J Afr Earth Sci 23:125–182

    Google Scholar 

  • Sarangi S, Gopalan K, Kumar S (2004) Pb-Pb age of earliest megascopic eukaryotic alga-bearing Rohtas Formation, Vindhyan Supergroup, India: implications of Precambrian atmospheric oxygen evolution. Precambrian Res 132:107–121

    Google Scholar 

  • Schultz PH, Merrill RB (1981) Multi-ring basins: formation and evolution. In: Proc Lunar Planet Sci, vol 12A. Pergamon, New York, 295 p

    Google Scholar 

  • Sharma HS (1973) Ramgarh structure, India. Nature 242:39–40

    Google Scholar 

  • Sisodia MS, Lashkari G, Bhandari N (2006) Impact origin of the Ramgarh structure, Rajasthan: some new evidences. J Geol Soc India 67:423–431

    Google Scholar 

  • Spudis PD (1993) The geology of multi-ring impact basins: the Moon and other planets. Cambridge University Press, New York, 263 p

    Google Scholar 

  • Stöffler D, Deutsch A, Avermann M, Bischoff L, Brockmeyer P, Buhl D, Lakomy R, Müller-Mohr V (1994) The formation of the Sudbury structure, Canada: toward a unified impact model. In: Dressler BO, Grieve RAF, Sharpton VL(eds) Large meteorite impacts and planetary evolution. Geological Society of America Special Paper 293, pp 303–318

    Google Scholar 

  • Stöffler D, Langenhorst F (1994) Shock metamorphism of quartz in nature and experiment: I. Basic observation and theory. Meteoritics 29:155–181

    Google Scholar 

  • Taylor SR (1992) Solar system evolution: a new perspective. Cambridge University Press, New York, 307 p

    Google Scholar 

Download references

Acknowledgements

JKP thanks the PLANEX, Department of Space, Government of India for funding the impact crater research at the University of Allahabad. We thank Dr. Axel Wittmann, LPI, USA for his excellent review and helpful suggestions which improved the overall quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayanta K. Pati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pati, J.K., Pati, P. (2013). Impact Cratering from an Indian Perspective. In: Sinha, R., Ravindra, R. (eds) Earth System Processes and Disaster Management. Society of Earth Scientists Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28845-6_15

Download citation

Publish with us

Policies and ethics