Skip to main content

Anthropogenic Climate Change: Observed Facts, Projected Vulnerabilities and Knowledge Gaps

  • Chapter
  • First Online:
Earth System Processes and Disaster Management

Part of the book series: Society of Earth Scientists Series ((SESS))

  • 1488 Accesses

Abstract

Rising temperatures on earth especially during the later half of the twentieth century have been largely attributed to increasing greenhouse gases (GHG) levels in atmosphere, due to worldwide growth in fossil fuel consumptions by the industrialized nations. Though there are several other offspring of industrial revolution other than GHGs, e.g., increased atmospheric water vapor, aerosols, which also may affect terrestrial climate in either way on shorter timescales, understanding their net role in terms of climate change on regional to global scale remains limited (IPCC 2007). In aggregate, though anticipated anthropogenic climate changes have generated immense curiosity, concerns and lucid debates among intellectuals, scientific experts as reported by Rockstörm et al. (Nature 461:472–475, 2009) broadly agree that deeper understanding is required on how these anthropogenic drivers mutually interact among themselves and most importantly with natural drivers in terms of their net climatic impact. In this communication, we intend to put forward some of the established facts of anthropogenic climate change, projected vulnerabilities of immediate concern and important knowledge gaps that are yet to be explored and understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agnihotri R, Dutta K (2003) Centennial scale variations in monsoonal rainfall (Indian, east equatorial and Chinese monsoons): manifestations of solar variability. Curr Sci 85:459–463

    Google Scholar 

  • Agnihotri R, Dutta K, Bhushan R, Somayajulu BLK (2002) Evidence for solar forcing on the Indian monsoon during the last millennium. Earth Planet Sci Lett 198:521–527. doi:10.1016/S0012-821X(02)00530-7

    Article  Google Scholar 

  • Agnihotri R, Dutta K, Soon W (2011) Temporal derivative of Total Solar Irradiance and anomalous Indian Summer monsoon: An empirical evidence for a sun-climate connection. Journal of Atmospheric and Solar-Terrestrial Physics 73:1980–1987

    Google Scholar 

  • Barnett TP, Pierce DW, AchutaRao KM, Gleckler PJ, Santer BD, Gregory JM, Washington WM (2005) Penetration of human-induced warming into the world’s oceans. Science 309:284–287

    Article  Google Scholar 

  • Bhattacharyya S, Narasimha R (2005) Wavelet cross-spectral analysis of Indian monsoon rainfall and solar activity. Geophys Res Lett 32:L05813. doi:10.1029/2004GL021044

    Google Scholar 

  • Blanford HF (1884) On the connection of the Himalayan snowfall with dry winds and seasons of draughts in India. Proc R Soc London 37:3–22

    Article  Google Scholar 

  • Bollasina MA, Ming Y, Ramaswamy V (2011) Anthropogenic Aerosols and the Weakening of the South Asian Summer Monsoon. Science 334:502–505

    Google Scholar 

  • Bond GB, Kromer B, Beer J, Muscheler R, Evans MN, Showers W, Hoffmann S, Lotti-Bond R, Hajdas I, Bonani G (2001) Persistent solar influence on North Atlantic climate during the Holocene. Science 294:2130–2136

    Article  Google Scholar 

  • Brown RD (2000) Northern hemisphere snow cover variability and change, 1915–1997. J Climate 13:2339–2355

    Article  Google Scholar 

  • Cowie J (2007) Climate change: biological and human aspects. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Demenocal PB (2001) Cultural responses to climate change during the late Holocene. Science 292. doi:10.1126/science.1059827 DOI:dx.doi.org

  • Eddy JA (1976) The Maunder minimum. Science 192. doi:10.1126/science.192.4245.1189

  • Goes GI, Thoppil PG, Gomes HR, Fasullo JT (2005) Warming of the Eurasian landmass is making the Arabian Sea more productive. Science 308:545–547. doi:10.1126/science.1106610

    Article  Google Scholar 

  • Goswami BN, Venugopal V, Sengupta D, Madhusoodanan MS, Xavier PK (2006) Increasing trend of extreme rain events over India in a warming environment. Science 314(5804):1442–1445

    Article  Google Scholar 

  • Gray LJ, Beer J, Geller M, Haigh JD, Lockwood M, Matthes K, Cubasch U, Fleitmann D, Harrison G, Hood L, Luterbacher J, Meehl GA, Shindell D, van Geel B, White W (2010) Solar influences on climate. Rev Geophys 48, RG4001, 53. doi: 10.1029/2009RG000282

  • Hodell DA, Curtis J, Brenner M (1995) Possible role of climate in the collapse of Classic Maya civilization. Nature 375:391–394. doi:10.1038/375391a0

    Article  Google Scholar 

  • Hopp MJ, Foley JA (2003) Worldwide fluctuations in dengue fever cases related to climate variability. Climate Res 25:85–94

    Article  Google Scholar 

  • IPCC (2001) “Graph of 20 glaciers in retreat worldwide”. Climate change 2001 (Working group I: the scientific basis). http://www.grida.no/climate/ipcc_tar/wg1/fig2-18.htm

  • IPCC (2007) Climate change 2007 – the physical science basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Jevrejeva S, Grinsted A, Moore JC (2009) Anthropogenic forcing dominates sea level rise since 1850. Geophys Res Lett 36:L20706. doi:10.1029/2009GL040216

    Article  Google Scholar 

  • Krivova NA, Balmaceda L, Solanki SK (2007) Reconstruction of solar total irradiance since 1700 from the surface magnetic flux. Astron Astrophys 467:335–346

    Article  Google Scholar 

  • Kumar SP, Roshin RP, Narvekar J, Dinesh Kumar PK, Vivekanandan E (2009) Response of the Arabian Sea to global warming and associated regional climate shift. Mar Environ Res 68:217–222. doi:10.1016/j.marenvres.2009.06.010

    Article  Google Scholar 

  • Lau WKM, Kim KM (2010) Fingerprinting the impacts of aerosols on long term trends of the Indian summer monsoon regional rainfall. Geophys Res Lett 37:L16705. doi:10.1029/2010GL043255

    Article  Google Scholar 

  • Lockwood M, Harrison RG, Woolings T, Solanki SK (2010) Are cold winters in Europe associated with low solar activity? Environ Res Lett 5. doi:10.1088/1748-9326/5/2/02001

  • Lohmann R, Bollinger K, Cantwell M, Feichter J, Fischer-Bruns I, Zabel M (2009) Fluxes of soot black carbon to South Atlantic sediments. Global Biogeochem Cycles 23:GB1015. doi:10.1029/2008GB003253

    Article  Google Scholar 

  • Mangini A, Spotl C, Verdes P (2005) Reconstruction of temperature in the Central Alps during the past 2000 yr from a δ18O stalagmite record. Earth Planet Sci Lett 235:741–751

    Article  Google Scholar 

  • Mauas PJD, Flamenco E, Buccino AP (2008) Solar Forcing of the stream flow of a continental scale South American river. Phys Rev Lett 101(168501):1–4

    Google Scholar 

  • Mauas PJD, Buccino AP, Flamenco E (2010) Long-term solar activity influences on South American rivers. J Atmos Sol Terr Phys 73. doi:10.1016/j.jastp. 2010.02.019

  • Meehl GA, Arblaster JM, Matthes K, Sassi F, van Loon H (2009) Amplifying the Pacific climate system response to a small 11-year solar cycle forcing. Science 325:1114–1118

    Article  Google Scholar 

  • Menon S, Hansen J, Nazarenko L (2002) Climate effects of black carbon aerosols in China and India. Science 297:2250–2253

    Article  Google Scholar 

  • Naqvi SWA, Jayakumar DA, Narvekar PV, Naik H, Sarma VVSS, D’Souza W, Joseph S, George MD (2000) Increased marine production of N2O due to intensifying anoxia on the Indian continental shelf. Nature 408:346–349

    Article  Google Scholar 

  • Niyogi D, Chang H-I, Chen F, Gu L, Kumar A, Menon S, Pielke RA Sr (2007) Potential impacts of aerosol–land–atmosphere interactions on the Indian monsoonal rainfall characteristics. Nat Hazards 42. doi:10.1007/s11069-006-9085-y

  • Prakash S, Ramesh R (2007) Is the Arabian Sea getting more productive? Curr Sci 92:667–671

    Google Scholar 

  • Ramanathan V, Carmichael G (2008) Global and regional climate changes due to black carbon. Nat Geosci 1:221–227

    Article  Google Scholar 

  • Ramanathan V, Crutzen PJ, Kiehl JT, Rosenfeld D (2001) Aerosols, climate, and the hydrological cycle. Science 294:2119–2124

    Article  Google Scholar 

  • Rignot E (2006) Changes in ice dynamics and mass balance of the Antarctic ice sheet. Philos Trans R Soc 364:1637–1655. doi:10.1098/rsta.2006.1793

    Article  Google Scholar 

  • Rockström J et al (2009) A safe operating space for humanity. Nature 461:472–475. doi:10.1038/461472a

    Article  Google Scholar 

  • Rogers D, Randolph SE (2000) The global spread of malaria in a future warmer world. Science 289:1763–1766

    Article  Google Scholar 

  • Rupa Kumar R, Krishna Kumar K, Ashrit RG, Patwardhan SK, Pant GB (2002) Climate change in India: observations and model projections. In: Shukla PR, Sharma SK, Venkata Ramana P (eds) Climate change and India: issues, concerns and opportunities. Tata McGraw-Hill Publishing Company Limited, New Delhi

    Google Scholar 

  • Stager JC, Ruzmaikin A, Conway D, Verburg P, Mason PJ (2007) Sunspots, El Niño, and the levels of Lake Victoria, East Africa. J Geophys Res 112:D15106. doi:10.1029/2006JD008362

    Article  Google Scholar 

  • Sunyer J, Grimalt J (2006) Global climate change, widening health inequalities, and epidemiology. Int J Epidemiol 35:213–216. doi:10.1093/ije/dyl025

    Article  Google Scholar 

  • Thompson LG, Brechera HH, Mosley-Thompson E, Hardyd DR, Mark BG (2009) Glacier loss on Kilimanjaro continues unabated. PNAS 106:19770–19775. doi:10.1073.pnas.0906029106

    Article  Google Scholar 

  • Verschuren D, Laird KR, Cumming BF (2000) Rainfall and drought in equatorial East Africa during the past 1,100 years. Nature 403:410–413

    Article  Google Scholar 

  • Walker GT (1910) Correlations in seasonal variations of weather, II. Mem India Meteorol Dept 21:22–45

    Google Scholar 

  • Wang Y, Cheng H, Edwards RL, He Y, Kong X, An Z, Wu J, Kelly MJ, Dykoski CA, Li X (2005) The Holocene Asian monsoon: links to solar changes and North Atlantic climate. Science 308:854–857

    Article  Google Scholar 

  • Webster PJ, Holland GJ, Curry JA, Chang HR (2005) Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309:1844–1846

    Article  Google Scholar 

  • Wu P et al (2009) Higher temperature and urbanization affect the spatial patterns of dengue fever transmission in subtropical Taiwan. Sci Total Environ 407:2224–2233

    Article  Google Scholar 

Download references

Acknowledgements

RA thanks Director, NPL New Delhi for facilities and Council of Scientific and Industrial Research (CSIR) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Agnihotri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Agnihotri, R., Dutta, K. (2013). Anthropogenic Climate Change: Observed Facts, Projected Vulnerabilities and Knowledge Gaps. In: Sinha, R., Ravindra, R. (eds) Earth System Processes and Disaster Management. Society of Earth Scientists Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28845-6_10

Download citation

Publish with us

Policies and ethics