Skip to main content

Extraterrestrial He in Sediments: From Recorder of Asteroid Collisions to Timekeeper of Global Environmental Changes

  • Chapter

Part of the book series: Advances in Isotope Geochemistry ((ADISOTOPE))

Abstract

Most 3He in deep-sea sediments is derived from fine-grained extraterrestrial matter known as interplanetary dust particles (IDPs). These particles, typically <50 μm in diameter, are sufficiently small to retain solar wind-implanted He with high 3He/4He ratios during atmospheric entry heating. This extraterrestrial 3He (3HeET) is retained in sediments for geologically long durations, having been detected in sedimentary rocks as old as 480 Ma. As a tracer of fine-grained extraterrestrial material, 3HeET offers unique insights into solar system events associated with increased IDP fluxes, including asteroid break-up events and comet showers. Studies have used 3HeET to identify IDP flux changes associated with a Miocene asteroid break-up event and a likely comet shower in the Eocene. During much of the Cenozoic, 3HeET fluxes have remained relatively constant over million-year timescales, enabling 3HeET to be used as a constant flux proxy for calculating sedimentary mass accumulation rates and constraining sedimentary age models. We review studies employing 3HeET-based accumulation rates to estimate the duration of carbonate dissolution events associated with the K/Pg boundary and Paleocene-Eocene Thermal Maximum. Additionally, 3HeET has been used to quantify sub-orbital variability in fluxes of paleoproductivity proxies and windblown dust. In order to better interpret existing records and guide the application of 3HeET in novel settings, future work requires constraining the carrier phase(s) of 3HeET responsible for long-term retention in sediments, better characterizing the He isotopic composition of the terrigenous end-member, and understanding why observed extraterrestrial 3He fluxes do not match the predicted variability of IDP accretion rate over orbital timescales.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alvarez LW, Alvarez W, Asaro F, Michel HV (1980) Extraterrestrial cause for the cretaceous-tertiary extinction: experimental results and theoretical interpretation. Science 208(4448):1095–1108

    Google Scholar 

  • Amari S, Ozima M (1985) Search for the origin of exotic helium in deep-sea sediments. Nature 317(6037):520–522

    Google Scholar 

  • Amari S, Ozima M (1988) Extraterrestrial noble gases in deep-sea sediments. Geochim Cosmochim Acta 52(5):1087–1095

    Google Scholar 

  • Andrews JN (1985) The isotopic composition of radiogenic helium and its use to study groundwater movement in confined aquifers. Chem Geol 49:339–351

    Google Scholar 

  • Basu S, Stuart FM, Klemm V, Korschinek G, Knie K, Hein JR (2006) Helium isotopes in ferromanganese crusts from the central Pacific Ocean. Geochim Cosmochim Acta 70(15):3996–4006. doi:10.1016/j.gca.2006.05.015

    Article  Google Scholar 

  • Becker L, Poreda RJ, Hunt AG, Bunch TE, Rampino M (2001) Impact event at the permian-triassic boundary: Evidence from extraterrestrial noble gases in fullerenes. Science 291:1530–1533

    Google Scholar 

  • Benkert JP, Baur H, Signer P, Wieler R (1993) He, Ne, and Ar from the solar wind and solar energetic particles in lunar ilmenites and pyroxenes. J Geophys Res 98(E7):13147–13162

    Google Scholar 

  • Bradley JP, Sandford SA, Walker RM (1988) Interplanetary dust particles. In: Kerridge J, Mathews MS (eds) Meteorites and the Solar System. University of Arizona Press, Tucson, pp 861–895

    Google Scholar 

  • Brook EJ, Kurz MD, Curtice J (2009) Flux and size fractionation of He-3 in interplanetary dust from Antarctic ice core samples. Earth Planet Sci Lett 286(3–4):565–569. doi:10.1016/J.Epsl.2009.07.024

    Article  Google Scholar 

  • Brook EJ, Kurz MD, Curtice J, Cowburn S (2000) Accretion of interplanetary dust in polar ice. Geophys Res Lett 27(19):3145–3148

    Google Scholar 

  • Brownlee DE (1985) Cosmic dust: collection and research. Ann Rev Earth Planet Sci 13:147–173

    Google Scholar 

  • Burns JA, Lamy PL, Soter S (1979) Radiation forces on small particles in the solar-system. Icarus 40(1):1–48

    Google Scholar 

  • Dermott SF, Grogan K, Durda DD, Jayaraman S, Kehoe TJJ, Kortenkamp SJ, Wyatt MC (2001) Orbital evolution of interplanetary dust. In: Grün E, Gustafson BÅS, Dermott SF, Fechtig H (eds) Interplanetary dust. Springer, Berlin, pp 569–641

    Google Scholar 

  • Du XQ, Wang YH, Ren JG, Ye XR, Lu HY (2007) Helium isotope investigation on magnetic reversal boundaries of loess-paleosol sequence at Luochuan, central Chinese Loess Plateau. Chin Sci Bull 52(17):2407–2412

    Google Scholar 

  • Farley KA (1995) Cenozoic variations in the flux of interplanetary dust recorded by He-3 in a deep-sea sediment. Nature 376(6536):153–156

    Google Scholar 

  • Farley KA (2000) Extraterrestrial helium in seafloor sediments: identification, characteristics, and accretion rate over geologic time. In: Peucker-Ehrenbrink B, Schmitz B (eds) Accretion of extraterrestrial matter throughout Earth’s history. Kluwer, New York, pp 179–204

    Google Scholar 

  • Farley KA, Eltgroth SF (2003) An alternative age model for the Paleocene-Eocene thermal maximum using extraterrestrial He-3. Earth Planet Sci Lett 208(3–4):135–148. doi:10.1016/S0012-821x(03)00017-7

    Article  Google Scholar 

  • Farley KA, Love SG, Patterson DB (1997) Atmospheric entry heating and helium retentivity of interplanetary dust particles. Geochim Cosmochim Acta 61(11):2309–2316

    Google Scholar 

  • Farley KA, Montanari A, Shoemaker EM, Shoemaker CS (1998) Geochemical evidence for a comet shower in the late eocene. Science 280(5367):1250–1253

    Google Scholar 

  • Farley KA, Mukhopadhyay S (2001) An extraterrestrial impact at the permian-triassic boundary? Science 293:2343

    Google Scholar 

  • Farley KA, Patterson DB (1995) A 100-Kyr periodicity in the flux of extraterrestrial He-3 to the sea floor. Nature 378(6557):600–603

    Google Scholar 

  • Farley KA, Vokrouhlicky D, Bottke WF, Nesvorný D (2006) A late miocene dust shower from the break-up of an asteroid in the main belt. Nature 439(7074):295–297. doi:10.1038/Nature04391

    Article  Google Scholar 

  • Farley KA, Ward P, Garrison G, Mukhopadhyay S (2005) Absence of extraterrestrial He-3 in permian-triassic age sedimentary rocks. Earth Planet Sci Lett 240(2):265–275. doi:10.1016/J.Epsl.2005.09.054

    Article  Google Scholar 

  • Fireman EL, Kistner GA (1961) The nature of dust collected at high altitudes. Geochim Cosmochim Acta 24:10–22

    Google Scholar 

  • Flynn GJ (1989) Atmospheric entry heating: a criterion to distinguish between asteroidal and cometary sources of interplanetary dust. Icarus 77(2):287–310

    Google Scholar 

  • Fourre E (2004) A 475 kyr record of extraterrestrial 3He and 230Th in North Atlantic sediments: caveats to derive MAR from these tracers. Eos Trans AGU 85(47):Fall Meet Suppl, Abstract PP33A–0910

    Google Scholar 

  • Francois R, Frank M, van der Loeff MMR, Bacon MP (2004) Th-230 normalization: an essential tool for interpreting sedimentary fluxes during the late quaternary. Paleoceanography 19(1):PA1018. Doi: 10.1029/2003PA000994

    Google Scholar 

  • Fraundorf P, Brownlee DE, Walker RM (1982) Laboratory studies of interplanetary dust. In: Wilkening LL (ed) Comets. University of Arizona Press, Tucson, pp 383–409

    Google Scholar 

  • Fredriksson K (1956) Cosmic Spherules in Deep-Sea Sediments. Nature 177(4497):32–33

    Google Scholar 

  • Fredriksson K, Gowdy R (1963) Meteoric debris from the southern California desert. Geochim Cosmochim Acta 27:241–243

    Google Scholar 

  • Fredriksson K, Martin LR (1963) The origin of black spherules found in Pacific islands, deep-sea sediments, and Antarctic ice. Geochim Cosmochim Acta 27:245–248

    Google Scholar 

  • Fukumoto H, Nagao K, Matsuda J (1986) Noble gas studies on the host phase of high 3He/4He ratios in deep-sea sediments. Geochim Cosmochim Acta 50:2245–2253

    Google Scholar 

  • Futagami T, Ozima M, Nakamura Y (1990) Helium ion implantation into minerals. Earth Planet Sci Lett 101(1):63–67

    Google Scholar 

  • Gladman BJ, Migliorini F, Morbidelli A, Zappala V, Michel P, Cellino A, Froeschle C, Levison HF, Bailey M, Duncan M (1997) Dynamical lifetimes of objects injected into asteroid belt resonances. Science 277(5323):197–201

    Google Scholar 

  • Grimberg A, Baur H, Bochsler P, Bühler F, Burnett DS, Hays CC, Heber VS, Jurewicz AJG, Wieler R (2006) Solar wind neon from Genesis: implications for the lunar noble gas record. Science 314:1133–1135. doi:10.1126/science.1133568

    Article  Google Scholar 

  • Higgins SM, Anderson RF, Marcantonio F, Schlosser P, Stute M (2002) Sediment focusing creates 100-ka cycles in interplanetary dust accumulation on the Ontong Java Plateau. Earth Planet Sci Lett 203(1):383–397

    Google Scholar 

  • Hiyagon H (1994) Retention of solar helium and neon in IDPs in deep-sea sediments. Science 263:1257–1259

    Google Scholar 

  • Hut P, Alvarez W, Elder WP, Hansen T, Kauffman EG, Keller G, Shoemaker EM, Weissman PR (1987) Comet showers as a cause of mass extinctions. Nature 329(6135):118–126

    Google Scholar 

  • Kortenkamp SJ, Dermott SF (1998a) A 100,000-year periodicity in the accretion rate of interplanetary dust. Science 280(5365):874–876

    Google Scholar 

  • Kortenkamp SJ, Dermott SF (1998b) Accretion of interplanetary dust particles by the Earth. Icarus 135(2):469–495

    Google Scholar 

  • Kurz MD, Kenna TC, Lassiter JC, Depaola DJ (1996) Helium isotopic evolution of Mauna Kea: first results from the 1 km drill core. J Geophys Res 101:11781–11791

    Google Scholar 

  • Kyte FT, Leinen M, Heath GR, Zhou L (1993) Cenozoic sedimentation history of the central North Pacific: Inferences from the elemental geochemistry of core LL44-GPC3. Geochim Cosmochim Acta 57(8):1719–1740

    Google Scholar 

  • Laevastu T, Mellis O (1955) Extraterrestrial material in deep-sea deposits. Trans Am Geophys Union 36(3):385–389

    Google Scholar 

  • Lal D, Jull AJT (2005) On the fluxes and fates of He-3 accreted by the Earth with extraterrestrial particles. Earth Planet Sci Lett 235(1–2):375–390. doi:10.1016/J.Espl.2005.04.011

    Article  Google Scholar 

  • Love SG, Brownlee DE (1991) Heating and thermal transformation of micrometeroids entering the Earth’s atmosphere. Icarus 89(1):26–43

    Google Scholar 

  • Love SG, Brownlee DE (1993) A direct measurement of the terrestrial mass accretion rate of cosmic dust. Science 262(5133):550–553

    Google Scholar 

  • Love SG, Joswiak DJ, Brownlee DE (1994) Densities of stratospheric micrometeorites. Icarus 111(1):227–236

    Google Scholar 

  • Mamyrin BA, Tolstikhin IN (1984) Helium isotopes in nature. Elsevier, Amsterdam

    Google Scholar 

  • Marcantonio F, Anderson RF, Higgins S, Fleisher MQ, Stute M, Schlosser P (2001a) Abrupt intensification of the SW Indian Ocean monsoon during the last deglaciation: constraints from Th, Pa, and He isotopes. Earth Planet Sci Lett 184(2):505–514

    Google Scholar 

  • Marcantonio F, Anderson RF, Higgins S, Stute M, Schlosser P, Kubik P (2001b) Sediment focusing in the central equatorial Pacific Ocean. Paleoceanography 16(3):260–267

    Google Scholar 

  • Marcantonio F, Anderson RF, Stute M, Kumar N, Schlosser P, Mix A (1996) Extraterrestrial He-3 as a tracer of marine sediment transport and accumulation. Nature 383(6602):705–707

    Google Scholar 

  • Marcantonio F, Higgins S, Anderson RF, Stute M, Schlosser P, Rasbury ET (1998) Terrigenous helium in deep-sea sediments. Geochim Cosmochim Acta 62(9):1535–1543

    Google Scholar 

  • Marcantonio F, Kumar N, Stute M, Andersen RF, Seidl MA, Schlosser P, Mix A (1995) Comparative study of accumulation rates derived by He and Th isotope analysis of marine sediments. Earth Planet Sci Lett 133(3–4):549–555

    Google Scholar 

  • Marcantonio F, Thomas DJ, Woodard S, McGee D, Winckler G (2009) Extraterrestrial He-3 in Paleocene sediments from Shatsky Rise: Constraints on sedimentation rate variability. Earth Planet Sci Lett 287(1–2):24–30. doi:10.1016/J.Epsl.2009.07.029

    Article  Google Scholar 

  • Marcantonio F, Turekian KK, Higgins S, Anderson RF, Stute M, Schlosser P (1999) The accretion rate of extraterrestrial He-3 based on oceanic Th-230 flux and the relation to Os isotope variation over the past 200,000 years in an Indian Ocean core. Earth Planet Sci Lett 170(3):157–168

    Google Scholar 

  • Matsuda J, Murota M, Nagao K (1990) He and Ne isotopic studies on the extraterrestrial material in deep-sea sediments. J Geophys Res 95(B5):7111–7117

    Google Scholar 

  • McGee D, Marcantonio F, McManus JF, Winckler G (2010) The response of excess Th-230 and extraterrestrial He-3 to sediment redistribution at the Blake Ridge, western North Atlantic. Earth Planet Sci Lett 299(1–2):138–149. doi:10.1016/J.Epsl.2010.08.029

    Article  Google Scholar 

  • McGee D (2010) Reconstructing and interpreting the dust record and probing the plumbing of Mono Lake. Dissertation, Columbia University

    Google Scholar 

  • Merrihue C (1964) Rare gas evidence for cosmic dust in modern pacific red clay. Ann Ny Acad Sci 119(A1):351–367

    Google Scholar 

  • Mukhopadhyay S, Farley KA (2006) New insights into the carrier phase(s) of extraterrestrial 3He in geologically old sediments. Geochim Cosmochim Acta 70(19):5061–5073

    Google Scholar 

  • Mukhopadhyay S, Farley KA, Montanari A (2001a) A 35 Myr record of helium in pelagic limestones from Italy: Implications for interplanetary dust accretion from the early Maastrichtian to the middle Eocene. Geochim Cosmochim Acta 65(4):653–669

    Google Scholar 

  • Mukhopadhyay S, Farley KA, Montanari A (2001b) A short duration of the cretaceous-tertiary boundary event: evidence from extraterrestrial helium-3. Science 291(5510):1952–1955

    Google Scholar 

  • Muller RA, Macdonald GJ (1995) Glacial cycles and orbital inclination. Nature 377(6545):107–108

    Google Scholar 

  • Murphy BH, Farley KA, Zachos JC (2010) An extraterrestrial He-3-based timescale for the Paleocene-Eocene thermal maximum (PETM) from Walvis Ridge, IODP Site 1266. Geochim Cosmochim Acta 74(17):5098–5108. doi:10.1016/J.Gca.2010.03.039

    Article  Google Scholar 

  • Murray J (1876) On the distribution of volcanic debris over the floor of the ocean—its character, source and some of the products of its disintegration and decomposition. Proc R Soc Edinb 9:247–261

    Google Scholar 

  • Nesvorný D, Bottke WF, Levison HF, Dones L (2003) Recent origin of the solar system dust bands. Astrophys J 591(1):486–497

    Google Scholar 

  • Nesvorný D, Jenniskens P, Levison HF, Bottke WF, Vokrouhlicky D, Gounelle M (2010) Cometary origin of the zodiacal cloud and carbonaceous micrometeorites. Implications for hot debris disks. Astrophys J 713(2):816–836. doi:10.1088/0004-637x/713/2/816

    Article  Google Scholar 

  • Nesvorný D, Vokrouhlicky D, Bottke WF, Sykes M (2006) Physical properties of asteroid dust bands and their sources. Icarus 181(1):107–144. doi:10.1016/J.Icarus.2005.10.022

    Article  Google Scholar 

  • Nier AO, Schlutter DJ (1990) Helium and neon in stratospheric particles. Meteoritics 25:263–267

    Google Scholar 

  • Nier AO, Schlutter DJ (1992) Extraction of helium from individual interplanetary dust particles by step-heating. Meteoritics 27(2):166–173

    Google Scholar 

  • Nier AO, Schlutter DJ (1993) The thermal history of interplanetary dust particles collected in the Earth’s stratosphere. Meteoritics 28(5):675–681

    Google Scholar 

  • Nier AO, Schlutter DJ, Brownlee DE (1990) Helium and neon isotopes in deep Pacific Ocean sediments. Geochim Cosmochim Acta 54(1):173–182

    Google Scholar 

  • Patterson DB, Farley KA (1998) Extraterrestrial 3He in seafloor sediments: Evidence for correlated 100 kyr periodicity in the accretion rate of interplanetary dust, orbital parameters, and Quaternary climate. Geochim Cosmochim Acta 62(23/24):3669–3682

    Google Scholar 

  • Patterson DB, Farley KA, Schmitz B (1998) Preservation of extraterrestrial He-3 in 480-Ma-old marine limestones. Earth Planet Sci Lett 163(1–4):315–325

    Google Scholar 

  • Pepin RO, Palma RL, Schlutter DJ (2000) Noble gases in interplanetary dust particles, I: the excess helium-3 problem and estimates of the relative fluxes of solar wind and solar energetic particles in interplanetary space. Meteorit Planet Sci 35(3):495–504

    Google Scholar 

  • Pepin RO, Palma RL, Schlutter DJ (2001) Noble gases in interplanetary dust particles, II: excess helium-3 in cluster particles and modeling constraints on interplanetary dust particle exposures to cosmic-ray irradiation. Meteorit Planet Sci 36(11):1515–1534

    Google Scholar 

  • Röhl U, Bralower TJ, Norris RD, Wefer G (2000) New chronology for the late paleocene thermal maximum and its environmental implications. Geology 28(10):927–930

    Google Scholar 

  • Röhl U, Westerhold T, Bralower TJ, Zachos JC (2007) On the duration of the paleocene-eocene thermal maximum (PETM). Geochem Geophy Geosy 8:Q12002. doi:10.1029/2007GC001784

    Google Scholar 

  • Stuart FM, Harrop PJ, Knott S, Turner G (1999) Laser extraction of helium isotopes from antarctic micrometeorites: source of He and implications for the flux of extraterrestrial He-3 to earth. Geochim Cosmochim Acta 63(17):2653–2665

    Google Scholar 

  • Takanayagi M, Ozima M (1987) Temporal variation of 3He/4He ratio recorded in deep-sea sediment cores. J Geophys Res 92(B12):12531–12538

    Google Scholar 

  • Tagle R, Claeys P (2004) Comet or asteroid shower in the late Eocene? Science 305(5683):492

    Google Scholar 

  • Thiel E, Schmidt RA (1961) Spherules from the antarctic ice cap. J Geophys Res 66(1):307–310

    Google Scholar 

  • Tilles D (1962) Primordial gas in the Washington county meteorite. J Geophys Res 67(4):1687–1689

    Google Scholar 

  • Tolstikhin I, Lehmann BE, Loosli HH, Gautschi A (1996) Helium and argon isotopes in rocks, minerals, and related groundwaters: a case study in northern Switzerland. Geochim Cosmochim Acta 60(9):1497–1514

    Google Scholar 

  • Tolstikhin IN, Drubetskoy ER (1975) The 3He/4He and (4He/40Ar)rad isotope ratios for earth’s crust. Geochem Int 12:133–145

    Google Scholar 

  • Torfstein A, Winckler G, Tripati A (2010) Productivity feedback did not terminate the paleocene-eocene thermal maximum (PETM). Clim Past 6(2):265–272

    Google Scholar 

  • Wieler R, Grimberg A, Heber VS (2007) Consequences of the non-existence of the “SEP” component for noble gas geo- and cosmochemistry. Chem Geol 244:382–390

    Google Scholar 

  • Winckler G, Anderson RF, Schlosser P (2005) Equatorial Pacific productivity and dust flux during the mid-Pleistocene climate transition. Paleoceanography 20(4): PA4025. doi:10.1029/2005pa001177

    Google Scholar 

  • Winckler G, Anderson RF, Stute M, Schlosser P (2004) Does interplanetary dust control 100 kyr glacial cycles? Quatern Sci Rev 23(18–19):1873–1878. doi:10.1016/J.Quascirev.2004.05.007

    Article  Google Scholar 

  • Winckler G, Fischer H (2006) 30,000 years of cosmic dust in antarctic ice. Science 313(5786):491. doi:10.1126/Science.1127469

    Article  Google Scholar 

  • Zähringer J (1962) Ueber die Uredelgase in den Achondriten Kapoeta und Staroe Pesjanoe. Geochimica et Cosmochimica Acta 26(6):665-680. doi:10.1016/0016-7037(62)90045-5

    Google Scholar 

Download references

Acknowledgement

The authors would like to thank Ken Farley for reviewing this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David McGee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

McGee, D., Mukhopadhyay, S. (2013). Extraterrestrial He in Sediments: From Recorder of Asteroid Collisions to Timekeeper of Global Environmental Changes. In: Burnard, P. (eds) The Noble Gases as Geochemical Tracers. Advances in Isotope Geochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28836-4_7

Download citation

Publish with us

Policies and ethics