Skip to main content

Part of the book series: Advances in Isotope Geochemistry ((ADISOTOPE))

Abstract

The atmosphere is the primary terrestrial reservoir of the heavy noble gases (Ne, Ar, Kr, Xe) and precise knowledge of the isotopic composition of atmospheric noble gases is important for many—if not all—fields of noble gas geochemistry. Air noble gases, including helium, are very commonly used as a running laboratory standard for calibrating instrumental discrimination and sensitivity (see Chap. 1), hence any potential temporal or spatial heterogeneities in the atmospheric noble gas composition could have consequences for the reliability and comparability of noble gas data. Metrological measurements such as the determination of Avogadro’s constant and the gas constant also depend on accurate determination of the isotopic composition (and isotopic masses) of atmospheric noble gases. However, absolute isotopic measurements are not straightforward and this section reviews both how absolute isotopic determinations have been made and assesses the temporal and spatial variability of the atmosphere at the present and in the recent (<2 Ka) past.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aldrich LT, Nier AO (1948) The occurence of He-3 in natural sources of helium. Phys Rev 74(11):1590–1594

    Google Scholar 

  • Aregbe Y, Mayer K, Valkiers S, DeBievre P (1996a) Release of anthropogenic xenon to the atmosphere: a large-scale isotope dilution. Int J Mass Spectrom Ion Processes 154(1–2):89–97

    Google Scholar 

  • Aregbe Y, Valkiers S, Mayer K, DeBievre P (1996b) Comparative isotopic measurements on xenon and krypton. Int J Mass Spectrom Ion Processes 153(1):L1–L5

    Google Scholar 

  • Aregbe Y, Mayer K, Valkiers S, DeBievre P (1997) Detection of reprocessing activities through stable isotope measurements of atmospheric noble gases. Fresenius J Anal Chem 358(4):533–535

    Google Scholar 

  • Aregbe Y, Valkiers S, Mayer K, De Bievre P, Wessel RM, Alink A (1998) Measuring amount ratios of gas isotopes by two primary methods. Metrologia 35(1):7–16

    Google Scholar 

  • Bender ML, Barnett B, Dreyfus G, Jouzel J, Porcelli D (2008) The contemporary degassing rate of Ar-40 from the solid Earth. Proc Nat Acad Sci USA 105(24):8232–8237

    Google Scholar 

  • Bianchi D, Sarmiento JL, Gnanadesikan A, Key RM, Schlosser P, Newton R (2010) Low helium flux from the mantle inferred from simulations of oceanic helium isotope data. Earth Planet Sci Lett 297(3–4):379–386

    Google Scholar 

  • Bottomley DJ, Ross JD, Clarke WB (1984) Helium and neon isotope geochemistry of some ground waters from the Canadian Precambrian shield. Geochim Cosmochim Acta 48(10):1973–1985

    Google Scholar 

  • Cadogan PH (1977) Paleoatmospheric argon in Rhynie Chert. Nature 268(5615):38–41

    Google Scholar 

  • Clarke WB, Jenkins WJ, Top Z (1976) Determination of tritium by mass-spectrometric measurement of He-3. Int J Appl Radiat Isot 27(9):515–522

    Google Scholar 

  • Coon JH (1949) He-3 isotopic abundance. Phys Rev 75(9):1355–1357

    Google Scholar 

  • Craig H, Clark WB, Beg MA (1975) Excess 3He in deep sea-water on the East Pacific rise. Earth Planet Sci Lett 26:125–132

    Google Scholar 

  • Davidson TA, DE Emerson (1990) Direct determination of the He-3 content of atmospheric air by mass-spectrometry. J Geophys Res [Atmos] 95(D4):3565–3569

    Google Scholar 

  • Eberhard P, Eugster O, Marti K (1965) A redetermination of isotopic composition of atmospheric neon. Zeitschrift Fur Naturforschung Part a-Astrophysik Physik Und Physikalische Chemie A 20(4):623

    Google Scholar 

  • Gluckauf E (1946) A micro-analysis of the helium and neon contents of air. Proc R Soc Lond A Math Phys Sci 185(1000):98–119

    Google Scholar 

  • Gluckauf E, Paneth FA (1946) The helium content of atmospheric air. Proc R Soc Lond A Math Phys Sci 185(1000):89–98

    Google Scholar 

  • Graham DW (2002) Noble gas isotope geochemistry of mid-ocean ridge and ocean island basalts; characterization of mantle source reservoirs. Rev Mineral Geochem 47:247–317

    Google Scholar 

  • Hoffman JH, Nier AO (1993) Atmospheric helium isotopic ratio. Geophys Res Lett 20(2):121–123

    Google Scholar 

  • Holland PW, Emerson DE (1987) A determination of the He-4 content of near-surface atmospheric air within the continental United-States. J Geophy Res Solid Earth Planet 92(B12):12557–12566

    Google Scholar 

  • Izett GA, Obradovich JD (1994) AR-40/AR-39 age constraints for the jaramillo normal subchron and the matuyama-brunhes geomagnetic boundary. J Geophy Res Solid Earth 99(B2):2925–2934

    Google Scholar 

  • Jacob DJ (1999) Introduction to atmospheric chemistry. Princeton University Press, Princeton, p 266

    Google Scholar 

  • Johnson HE, Axford WI (1969) Production and loss of He-3 in Earths atmosphere. J Geophys Res 74(9):2433

    Google Scholar 

  • Kockarts G (1973) Helium in terrestrial atmosphere. Space Sci Rev 14(6):723–757

    Google Scholar 

  • Kockarts G, Nicolet M (1962) Le problem aeronomique de l’helium et de l’hydrogene neutres. Ann Geophys 18:269–290

    Google Scholar 

  • Laeter JRD, Böhlke JK, Bièvre PD, Hidaka H, Peiser HS, Rosman KJR, Taylor PDP (2003) Atomic weights of the elements: review 2000 (IUPAC Technical Report). Pure Appl. Chem. 75(6):683–800

    Google Scholar 

  • Lee JY, Marti K, Severinghaus JP, Kawamura K, Yoo HS, Lee JB, Kim JS (2006) A redetermination of the isotopic abundances of atmospheric Ar. Geochim Cosmochim Acta 70(17):4507–4512

    Google Scholar 

  • Lupton JE (1983) Terrestrial inert-gases—isotope tracer studies and clues to primordial components in the mantle. Annu Rev Earth Planet Sci 11:371–414

    Google Scholar 

  • Lupton J, Evans L (2004) The atmospheric helium isotope ratio: is it changing? Geophys Res Lett 31(13): 

    Google Scholar 

  • Lupton J, Graham D (1991) A ten-year decrease in the atmospheric helium isotope ratio possibly caused by human activity—comment. Geophys Res Lett 18(3):482–485

    Google Scholar 

  • Mamyrin BA, Tolstikhin I (1984) Helium isotopes in nature. Elsevier, Amsterdam, p 267

    Google Scholar 

  • Mamyrin BA, Anufriyev GS, Kamenskiy IL, Tolstikhin IN (1970) Determination of the isotopic composition of atmospheric helium. Geochem Int 7:498–505

    Google Scholar 

  • Mark DF, Stuart FM, de Podesta M (2011) New high-precision measurements of the isotopic composition of atmospheric argon. Geochim Cosmochim Acta 75(23):7494–7501

    Google Scholar 

  • Matsuda J, Matsumoto T, Sumino H, Nagao K, Yamamoto J, Miura Y, Kaneoka I, Takahata N, Sano Y (2002) The 3He/4He ratio of new internal He standard of Japan (HESJ). Geochem J 36(2):191–195

    Google Scholar 

  • Matsuda J-i, Matsumoto T, Suzuki A (2010) Helium in old porcelain: the historical variation of the He isotopic composition in air. Geochem J 44(6):E5–E9

    Google Scholar 

  • Moreira M, Kunz J, Allègre C (1998) Rare gas systematics in popping rock: isotopic and elemental compositions in the upper mantle. Science 279:1178–1181

    Google Scholar 

  • Muller JF, Brasseur G (1995) Images—a 3-dimensional chemical-transport model of the global troposphere. J Geophys Res [Atmos] 100(D8):16445–16490

    Google Scholar 

  • Nier AO (1950a) A redetermination of the relative abundances of the isotopes of carbon, nitrogen, oxygen, argon, and potassium. Phys Rev 77(6):789–793

    Google Scholar 

  • Nier AO (1950b) A redetermination of the relative abundances of the isotopes of neon, krypton, rubidium, xenon, and mercury. Phys Rev 79(3):450–454

    Google Scholar 

  • Oliver BM, Bradley JG, Farrar H (1984) Helium concentration in the Earths lower atmosphere. Geochim Cosmochim Acta 48(9):1759–1767

    Google Scholar 

  • Ozima M, Podosek FA (1983) Noble gas geochemistry. Cambridge University Press, Cambridge, p 367

    Google Scholar 

  • Pavese F, Fellmuth B, Head DI, Hermier Y, Hill KD, Valkiers S (2005) Evidence of a systematic deviation of the isotopic composition of neon from commercial sources compared with its isotopic composition in air. Anal Chem 77(15):5076–5080

    Google Scholar 

  • Pierson-Wickmann AC, Marty B, Ploquin A (2001) Helium trapped in historical slags: a search for temporal variation of the He isotopic composition of air. Earth Planet Sci Lett 194(1–2):165–175

    Google Scholar 

  • Pinti DL, Marty B (1995) Noble gases in crude oils from the Paris Basin, France: implications for the origin of fluids and constraints on oil-water-gas interactions. Geochim Cosmochim Acta 59(16):3389–3404

    Google Scholar 

  • Pujol M, Marty B, Burnard P, Philippot P (2009) Xenon in Archean barite: Weak decay of 130Ba, mass-dependent isotopic fractionation and implication for barite formation. Geochimica Cosmochimica Acta 73:6834–6846

    Google Scholar 

  • Sano Y (1998) Time rate of atmospheric 3He/4He change: constraints from South Pacific deep seawater. J Sci Hiroshima Univ Ser C 11:113–118

    Google Scholar 

  • Sano Y, Wakita H, Xu S (1988) Atmospheric helium isotope ratio. Geochem J 22(4):177–181

    Google Scholar 

  • Sano Y, Wakita H, Makide Y, Tominaga T (1989) A ten-year decrease in the atmospheric helium isotope ratio possibly caused by human activity. Geophys Res Lett 16(12):1371–1374

    Google Scholar 

  • Sano Y, Wakita H, Makide Y, Tominaga T (1991) A ten-year decrease in the atmospheric helium isotope ratio possibly caused by human activity—reply. Geophys Res Lett 18(3):486–488

    Google Scholar 

  • Sano Y, Takahata N, Gamo T (1995) Helium isotopes in South Pacific deep seawater. Geochem J 29(6):377–384

    Google Scholar 

  • Sano Y, Takahata N, Igarashi G, Koizumi N, Sturchio NC (1998) Helium degassing related to the Kobe earthquake. Chem Geol 150(1–2):171–179

    Google Scholar 

  • Sano Y, Tokutake T, Takahata N (2008) Accurate measurement of atmospheric helium isotopes. Anal Sci 24(4):521–525

    Google Scholar 

  • Sano Y, Furukawa Y, Takahata N (2010) Atmospheric helium isotope ratio: possible temporal and spatial variations. Geochim Cosmochim Acta 74(17):4893–4901

    Google Scholar 

  • Swaine DJ, Goodarzi F (1997) Environmental aspects of trace elements in coal. Kluwer Academic Publishers, Dordrecht, p 312

    Google Scholar 

  • Turrin BD, Swisher CC, III, Deino AL (2010) Mass discrimination monitoring and intercalibration of dual collectors in noble gas mass spectrometer systems. Geochem Geophys Geosyst 11, Q0AA09. doi:10.1029/2009GC003013

    Google Scholar 

  • Tans PP, Conway TJ, Nakazawa T (1989) Latitudinal distribution of the sources and sinks of atmospheric carbon-dioxide derived from surface observations and an atmospheric transport model. J Geophys Res [Atmos] 94(D4):5151–5172

    Google Scholar 

  • Torgersen T (1989) Terrestrial helium degassing fluxes and the atmospheric helium budget; implications with respect to the degassing processes of continental crust. Chem Geol (Isot Geosci Sect) 79(1):1–14

    Google Scholar 

  • Valkiers S, Schaefer F, De Bievre P (1994) Near-absolute gas (isotope) mass spectrometry: isotope abundance (and atomic weight) determinations of neon, krypton, xenon and argon. Elsevier, Amsterdam, pp 965–968

    Google Scholar 

  • Valkiers S, Aregbe Y, Taylor PDP, De Bievre P (1998) A primary xenon isotopic gas standard with SI traceable values for isotopic composition and molar mass. Int J Mass Spectrom 173(1–2):55–63

    Google Scholar 

  • Valkiers S, Varlam M, Berglund M, Taylor P, Gonfiantini R, De Bievre P (2008) Absolute measurements of isotope amount ratios on gases part II. Application of the measurement models developed on real gases. Int J Mass Spectrom 269(1–2):71–77

    Google Scholar 

  • Weiss W, Stockburger H, Sartorius H, Rozanski K, Heras C, Ostlund HG (1986) Mesoscale transport of Kr-85 originating from European sources. Nucl Instrum Meth phys Res., Sect B 17(5–6):571–574

    Google Scholar 

  • Zartman RE, Wasserburg GJ, Reynolds al e JH (1961) Helium, argon and carbon in some natural gases. J Geophys Res 66:277–306

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Sano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sano, Y., Marty, B., Burnard, P. (2013). Noble Gases in the Atmosphere. In: Burnard, P. (eds) The Noble Gases as Geochemical Tracers. Advances in Isotope Geochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28836-4_2

Download citation

Publish with us

Policies and ethics