Skip to main content

Parabolic Explosions in Families of Complex Polynomials

  • Chapter
  • First Online:
Essays in Mathematics and its Applications

Abstract

We present a new algebro-algebraic approach to the parabolic explosion of orbits for polynomials of a fixed degree \(d \geq 2\), \(P(z) = {z}^{d} + {a}_{d-1}{z}^{d-1} + \ldots + \lambda z,\ {a}_{d-1},\ldots ,{a}_{2},\lambda \in \mathbb{C}\) where 0 is a multiple fixed point of \({P}_{\mathbf{a}}^{\circ q}\) for some \(\mathbf{a} = ({a}_{d-1},\ldots ,{a}_{2},{\lambda }_{0})\) with \({\lambda }_{0}^{q} = 1,\ {\lambda }_{0}^{k}\neq 1\) for \(k = 1,\ldots ,q - 1\). We show using methods based on Puiseux series that for an open dense set of perturbed maps with \(\lambda = {\lambda }_{0}\exp (2\pi iu)\), 0 becomes a simple fixed point and a number of periodic orbits of period q appear which are holomorphic in u q. We also prove that the unwrapping coordinates for perturbations of an analytic map with a parabolic periodic point converge uniformly to the unwrapping coordinate for the map itself.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Abate, Discrete holomorphic local dynamical systems. Notes of the CIME course given in Cetraro (Italy) in July 2008, in Holomorphic Dynamics, ed. by G. Gentili, J. Guenot, G. Patrizio. Lecture Notes in Math (Springer, Berlin, 2010), pp. 1–55.

    Google Scholar 

  2. A. Avila, X. Buff, A. ChĂ©ritat, Siegel disks with smooth boundaries, Acta Math. 193, 1–30 (2004)

    Google Scholar 

  3. X. Buff, A. ChĂ©ritat, Upper bound for the size of quadratic Siegel disks. Invent. Math. 156(1), 1–24 (2004)

    Google Scholar 

  4. X. Buff, A. Chéritat, Quadratic Julia Sets with Positive Area, preprint, arXiv:math/0605514

    Google Scholar 

  5. X. Buff, A. ChĂ©ritat, Arbeitsgemeinschaft “Julia sets of positive measure”, Mathematische Forschunginstitut Oberwolfach, Report No. 17/2008

    Google Scholar 

  6. L. Block, D. Hart, The bifurcation of periodic orbits of one-dimensional maps. Ergod. Theory Dyn. Syst. 2(2), 125–129 (1982)

    Google Scholar 

  7. F. Bracci, Local dynamics of holomorphic diffeomorphisms. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. 8 7(3), 609–636 (2004)

    Google Scholar 

  8. L. Carleson, T.W. Gamelin, Complex Dynamics. Universitext: Tracts in Mathematics (Springer, New York, 1993)

    Google Scholar 

  9. A. ChĂ©ritat, Recherche d’ensembles de Julia de mesure de Lebesgue positive, ThĂšse, Orsay, dĂ©cembre 2001, available at: http://www.math.univ-toulouse.fr/~cheritat/publi2.php

  10. P. Cvitanovic̀, J. Myrheim, Universality for period n-tuplings in complex mappings, Phys. Lett. A 94(8), 329–333 (1983)

    Google Scholar 

  11. A. Douady, Does a Julia set depend continuously on the polynomial? in Complex Dynamical Systems. Proceedings of Symposia in Applied Mathematics, Cincinnati, vol. 49 (American Mathematical Society, Providence, 1994), pp. 91–138.

    Google Scholar 

  12. A. Douady, J.H. Hubbard, Étude Dynamique des PolynĂŽmes Complexes (Publications MathĂ©matiques, Orsay), 84–92 (1984); 85–94 (1985), available at: http://www.math.cornell.edu/~hubbard/

  13. J. Guckenheimer, P.H. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Applied Mathematical Sciences, vol. 42, (Springer, New York, 1990), Revised and corrected reprint of the 1983 original.

    Google Scholar 

  14. V.A. Gromov, Some solutions of a scalar equation with a vector parameter. Sibirsk. Mat. Zh. 32(5) 179–181, 210 (1991); translation in Siberian Math. J. 32(5), 882–883 (1991), (1992) (Russian)

    Google Scholar 

  15. A.I. Gol’berg, Y.G. Sinaĭ, K.M. Khanin, Universal properties of sequences of period-tripling bifurcations, Uspekhi Mat. Nauk. 38(1), 159–160 (1983) (Russian)

    Google Scholar 

  16. A. Hefez, Irreducible plane curve singularities. Real and Complex Singularities. Lecture Notes in Pure and Applied Mathamatics, vol. 232 (Dekker, New York, 2003) 1–120

    Google Scholar 

  17. K. Kodaira, Complex Manifolds and Deformation of Complex Structures. Classics in Mathematics. (Springer, Berlin, 2005), Translated from the 1981 Japanese original by Kazuo Akao. Reprint of the 1986 English edition.

    Google Scholar 

  18. J. Milnor, Dynamics in one Complex Variable, 3rd edn. Annals of Mathematics Studies, vol. 160 (Princeton University Press, Princeton, 2006)

    Google Scholar 

  19. P. Mardes̆ic̀, R. Roussarie, C. Rousseau, Modulus of analytic classification for unfoldings of generic parabolic diffeomorphisms. Mosc. Math. J. 4(2), 455–502 (2004)

    Google Scholar 

  20. T. Needham, Visual Complex Analysis (The Clarendon Press/Oxford University Press, New York, 1997)

    Google Scholar 

  21. R. Oudkerk, The parabolic implosion for \({f}_{0}(z) = z + {z}^{\nu +1} + \mathcal{O}({z}^{\nu +2})\), Ph.D. thesis, Warwick, 1999, available at: http://www.math.sunysb.edu/dynamics/theses/index.html

  22. C. Rousseau, C. Christopher, Modulus of analytic classification for the generic unfolding of a codimension 1 resonant diffeomorphism or resonant saddle. Ann. Inst. Fourier (Grenoble) 57(1), 301–360 (2007)

    Google Scholar 

  23. M. Shishikura, The Hausdorff dimension of the boundary of the Mandelbrot set and Julia sets. Ann. of Math. 2 147(2), 225–267 (1998)

    Google Scholar 

  24. M. Shishikura, Bifurcation of parabolic fixed points, in The Mandelbrot Set, Theme and Variations, London Mathematical Society Lecture Note Series, vol. 274 (Cambridge University Press, Cambridge, 2000) pp. 325–363

    Google Scholar 

  25. M. Stawiska, Parabolic explosions via Puiseux theorem, in [5], pp. 14–16

    Google Scholar 

  26. T.N. Subramaniam, D.E.G. Malm, How to integrate rational functions. Am. Math. Mon. 99(8), 762–772 (1992)

    Google Scholar 

  27. G.Y. Zhang, A simple proof of a theorem of block and hart. Am. Math. Mon. 107(8), 751 (2000)

    Google Scholar 

Download references

Acknowledgements

This article was written when the second named author was a Robert D. Adams Visiting Assistant Professor in the Department of Mathematics of the University of Kansas. She thanks for 3 years of being supported in this position. She also thanks the Mathematische Forschunginstitut Oberwolfach for an opportunity to participate in Arbeitsgemeinschaft “Julia sets of positive measure” in April 2008. Particular thanks go to the coordinators, Xavier Buff and Arnaud ChĂ©ritat, who inspired her interest in parabolic explosions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Estela A. Gavosto .

Editor information

Editors and Affiliations

Additional information

Dedicated to the 80th Anniversary of Professor Stephen Smale

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gavosto, E.A., Stawiska, M. (2012). Parabolic Explosions in Families of Complex Polynomials. In: Pardalos, P., Rassias, T. (eds) Essays in Mathematics and its Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28821-0_7

Download citation

Publish with us

Policies and ethics