Skip to main content

Gyrations: The Missing Link Between Classical Mechanics with Its Underlying Euclidean Geometry and Relativistic Mechanics with Its Underlying Hyperbolic Geometry

  • Chapter
  • First Online:

Abstract

The present article on the hyperbolic geometric interpretation of the relativistic mechanical effect known as Thomas precession is dedicated to the 80th Anniversary of Steve Smale for his leadership and commitment to excellence in the field of geometric mechanics. A study of Thomas precession in terms of its underlying hyperbolic geometry and elegant algebra is presented here in order to clarify the concept of Thomas precession. We review the studies of both Thomas precession and its abstract version, gyration. Based on the review we derive the correct Thomas precession angular velocity. We demonstrate here convincingly that the Thomas precession angle ε and its generating angle θ have opposite signs. We present the path from Einstein velocity addition to the gyroalgebra of gyrogroups and gyrations, and to the gyrogeometry that coincides with the hyperbolic geometry of Bolyai and Lobachevsky. We, then, demonstrate that the concept of Thomas precession in Einstein’s special theory of relativity is a concrete realization of the abstract concept of gyration in gyroalgebra.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. L. Belloni, C. Reina, Sommerfeld’s way to the Thomas precession. Eur. J. Phys. 7, 55–61 (1986)

    Google Scholar 

  2. E. Borel, Introduction Géométrique a Quelques Théories Physiques (Gauthier, Paris, 1914)

    Google Scholar 

  3. J.-L. Chenm, A.A. Ungar, The Bloch gyrovector. Found. Phys. 32(4), 531–565 (2002)

    Google Scholar 

  4. M. Chrysos, The non-intuitive \(\frac{1} {2}\) thomas factor: a heuristic argument with classical electromagnetism. Eur. J. Phys. 27(1), 1–4 (2006)

    Google Scholar 

  5. A.S. Eddington, The Mathematical Theory of Relativity. (University press, Cambridge, 1924)

    Google Scholar 

  6. J. Ehlers, W. Rindler, I. Robinson, Quaternions, bivectors, and the Lorentz group, in Perspectives in Geometry (Essays in Honor of V. Hlavatý) (Indiana University Press, Bloomington, 1966), pp. 134–149

    Google Scholar 

  7. A. Einstein, Zur Elektrodynamik Bewegter Körper [on the electrodynamics of moving bodies] (We use the English translation in, Einstein’s Miraculous Years: Five Papers that Changed the Face of Physics, or in The Principle of Relativity, or in http://www.fourmilab.ch/etexts/einstein/specrel/www/. Ann. Phys. (Leipzig). 17, 891–921 (1905)

  8. A. Einstein, Einstein’s Miraculous Years: Five Papers that Changed the Face of Physics (Princeton University Press, Princeton, 1998) Edited and introduced by John Stachel. Includes bibliographical references. Einstein’s dissertation on the determination of molecular dimensions – Einstein on Brownian motion – Einstein on the theory of relativity – Einstein’s early work on the quantum hypothesis. A new English translation of Einstein’s 1905 paper on pp. 123–160

    Google Scholar 

  9. T. Feder, Strong near subgroups and left gyrogroups. J. Algebra 259(1), 177–190 (2003)

    Google Scholar 

  10. M. Ferreira, G. Ren, Möbius gyrogroups: a Clifford algebra approach. J. Algebra 328(1), 230–253 (2011)

    Google Scholar 

  11. V. Fock, The Theory of Space, Time and Gravitation, 2nd revised edn. (Macmillan, New York, 1964). Translated from the Russian by N. Kemmer. A Pergamon Press Book

    Google Scholar 

  12. T. Foguel, A.A. Ungar, Involutory decomposition of groups into twisted subgroups and subgroups. J. Group Theory 3(1), 27–46 (2000)

    Google Scholar 

  13. T. Foguel, A.A. Ungar, Gyrogroups and the decomposition of groups into twisted subgroups and subgroups. Pac. J. Math 197(1), 1–11 (2001)

    Google Scholar 

  14. H. Gelman, The second orthogonality conditions in the theory of proper and improper rotations. I. Derivation of the conditions and of their main consequences. J. Res. Nat. Bur. Stand. Sect. B 72B, 229–237 (1968)

    Google Scholar 

  15. H. Gelman, The second orthogonality conditions in the theory of proper and improper rotations. II. The intrinsic vector. J. Res. Nat. Bur. Stand. Sect. B 73B, 125–138 (1969)

    Google Scholar 

  16. H. Gelman, The second orthogonality conditions in the theory of proper and improper rotations. III. The conjugacy theorem. J. Res. Nat. Bur. Stand. Sect. B 73B, 139–141 (1969)

    Google Scholar 

  17. H. Gelman, The second orthogonality conditions in the theory of proper and improper rotations. IV. Solution of the trace and secular equations. J. Res. Nat. Bur. Stand. Sect. B 73B, 215–223 (1969)

    Google Scholar 

  18. H. Goldstein, Classical Mechanics. Addison-wesley series in physics, 2nd edn. (Wesley, Reading, 1980)

    Google Scholar 

  19. R.M. Jonson, Gyroscope precession in special and general relativity from basic principles. Am. J. Phys. 75(5), 463–471 (2007)

    Google Scholar 

  20. D. Kalman, The axis of a rotation: analysis, algebra, geometry. Math. Mag. 62(4), 248–252 (1989)

    Google Scholar 

  21. E. Kreyszig, Differential Geometry (Dover, New York, 1991). Reprint of the 1963 edition

    Google Scholar 

  22. H.A. Lorentz, A. Einstein, H. Minkowski, H. Weyl, The Principle of Relativity (Dover, New York, 1952). With notes by A. Sommerfeld, Translated by W. Perrett and G. B. Jeffery, A collection of original memoirs on the special and general theory of relativity

    Google Scholar 

  23. P.K. MacKeown, Question 57: Thomas precession. Am. J. Phys. 65(2), 105 (1997)

    Google Scholar 

  24. G.B. Malykin, Thomas precession: correct and incorrect solutions. Phys.-Uspekhi 49(8), 837–853 (2006)

    Google Scholar 

  25. J.E. Marsden, Steve Smale and geometric mechanics, in From Topology to Computation: Proceedings of the Smalefest (Berkeley, CA, 1990) (Springer, New York, 1993), pp. 499–516

    Google Scholar 

  26. J. McCleary, Geometry From a Differentiable Viewpoint (Cambridge University Press, Cambridge, 1994)

    Google Scholar 

  27. C. Møller, The Theory of Relativity (Clarendon Press, Oxford, 1952)

    Google Scholar 

  28. Th.M. Rassias, Book review: a gyrovector space approach to hyperbolic geometry, by Abraham A. Ungar. J. Geom. Symm. Phys. 18, 93–106 (2010)

    Google Scholar 

  29. Th.M. Rassias, G.M. Rassias, Selected Studies, Physics-Astrophysics, Mathematics, History of Science: A Volume Dedicated to the Memory of Albert Einstein (North-Holland, Amsterdam, 1982)

    Google Scholar 

  30. J.A. Rhodes, M.D. Semon, Relativistic velocity space, Wigner rotation, and thomas precession. Am. J. Phys. 72(7), 943–960 (2004)

    Google Scholar 

  31. W. Rindler, I. Robinson, A plain man’s guide to bivectors, biquaternions, and the algebra and geometry of Lorentz transformations, in On Einstein’s Path (New York, 1996) (Springer, New York, 1999), pp. 407–433.

    Google Scholar 

  32. K. Rózga, On central extensions of gyrocommutative gyrogroups. Pac. J. Math. 193(1), 201–218 (2000)

    Google Scholar 

  33. R.U. Sexl, H.K. Urbantke, Relativity, Groups, Particles. Springer Physics (Springer, Vienna, 2001). Special relativity and relativistic symmetry in field and particle physics, Revised and translated from the third German (1992) edition by Urbantke

    Google Scholar 

  34. L. Silberstein, The Theory of Relativity (MacMillan, London, 1914)

    Google Scholar 

  35. S. Smale, Differentiable dynamical systems. Bull. Am. Math. Soc. 73, 747–817 (1967)

    Google Scholar 

  36. S. Smale, in The Collected Papers of Stephen Smale, vols. 1–3, ed. by F. Cucker, R. Wong (Singapore University Press, Singapore, 2000)

    Google Scholar 

  37. J.D.H. Smith, A.A. Ungar, Abstract space-times and their Lorentz groups. J. Math. Phys. 37(6), 3073–3098 (1996)

    Google Scholar 

  38. A. Sommerfeld, Über die Zusammensetzung der Geschwindigkeiten in der Relativtheorie. Physikalische Zeitschrift 10, 826–829 (1909)

    Google Scholar 

  39. J. Stachel, History of relativity, in Twentieth Century Physics, vol. I, ed. by L.M. Brown, A. Pais, B. Pippard (Published jointly by the Institute of Physics Publishing, Bristol, 1995), pp. 249–356

    Google Scholar 

  40. E.F. Taylor, J.A. Wheeler, Spacetime Physics (W.H. Freeman, San Francisco, 1966)

    Google Scholar 

  41. L.H. Thomas, The motion of the spinning electron. Nature 117, 514 (1926)

    Google Scholar 

  42. L.H. Thomas, The kinematics of an electron with an axis. Phil. Mag. 3, 1–23 (1927)

    Google Scholar 

  43. L.H. Thomas, Recollections of the discovery of the Thomas precessional frequency, in AIP Conference Proceedings No. 95, High Energy Spin Physics, ed. by G.M Bunce (Brookhaven National Lab, Brookhaven, 1982)

    Google Scholar 

  44. M. Tsamparlis, Special Relativity: An Introduction with 200 Problems and Solutions (Springer, New York, 2010)

    Google Scholar 

  45. A.A. Ungar, Thomas rotation and the parametrization of the Lorentz transformation group. Found. Phys. Lett. 1(1), 57–89 (1988)

    Google Scholar 

  46. A.A. Ungar, The relativistic noncommutative nonassociative group of velocities and the Thomas rotation. Result. Math. 16(1–2), 168–179 (1989). The term “K-loop” is coined here

    Google Scholar 

  47. A.A. Ungar, Group-like structure underlying the unit ball in real inner product spaces. Result. Math. 18(3–4), 355–364 (1990)

    Google Scholar 

  48. A.A. Ungar, Quasidirect product groups and the Lorentz transformation group, in Constantin Carathéodory: An International Tribute, vols. I, II, ed. by Th.M. Rassias (World Scientific, Teaneck, 1991), pp. 1378–1392

    Google Scholar 

  49. A.A. Ungar, Thomas precession and its associated grouplike structure. Am. J. Phys. 59(9), 824–834 (1991)

    Google Scholar 

  50. A.A. Ungar, Thomas precession: its underlying gyrogroup axioms and their use in hyperbolic geometry and relativistic physics. Found. Phys. 27(6), 881–951 (1997)

    Google Scholar 

  51. A.A. Ungar, Gyrovector spaces in the service of hyperbolic geometry, in Mathematical Analysis and Applications, ed. by Th.M. Rassias (Hadronic Press, Palm Harbor, 2000) pp. 305–360

    Google Scholar 

  52. A.A. Ungar, Beyond the Einstein Addition Law and Its Gyroscopic Thomas Precession: The Theory of Gyrogroups and Gyrovector Spaces, volume 117 of Fundamental theories of physics (Kluwer, Dordrecht, 2001)

    Google Scholar 

  53. AA. Ungar, Seeing the möbius disc-transformation like never before. Comput. Math. Appl. 45, 805–822 (2003)

    Google Scholar 

  54. A.A. Ungar, Analytic Hyperbolic Geometry: Mathematical Foundations and Applications (World Scientific, Hackensack, 2005)

    Google Scholar 

  55. A.A. Ungar, Gyrovector spaces and their differential geometry. Nonlinear Funct. Anal. Appl. 10(5), 791–834 (2005)

    Google Scholar 

  56. A.A. Ungar, Analytic Hyperbolic Geometry and Albert Einstein’s Special Theory of Relativity (World Scientific, Hackensack, 2008)

    Google Scholar 

  57. A.A. Ungar, Einstein’s special relativity: the hyperbolic geometric viewpoint, in PIRT Conference Proceedings, 4–6 September 2009, Budapest, pp. 1–35

    Google Scholar 

  58. A.A. Ungar A Gyrovector Space Approach to Hyperbolic Geometry (Morgan and Claypool, San Rafael, 2009).

    Google Scholar 

  59. A.A. Ungar, Barycentric Calculus in Euclidean and Hyperbolic Geometry: A Comparative Introduction (World Scientific, Hackensack, 2010)

    Google Scholar 

  60. A.A. Ungar, Hyperbolic Triangle Centers: The Special Relativistic Approach (Springer, New York, 2010)

    Google Scholar 

  61. A.A. Ungar, When relativistic mass meets hyperbolic geometry. Commun. Math. Anal. 10(1), 30–56 (2011)

    Google Scholar 

  62. V. Varičak, Beiträge zur nichteuklidischen geometrie [contributions to non-euclidean geometry]. Jber. Dtsch. Mat. Ver. 17, 70–83 (1908)

    Google Scholar 

  63. V. Varičak, Anwendung der Lobatschefskjschen Geometrie in der Relativtheorie. Physikalische Zeitschrift 11, 93–96 (1910)

    Google Scholar 

  64. J. Vermeer, A geometric interpretation of Ungar’s addition and of gyration in the hyperbolic plane. Topology Appl. 152(3), 226–242 (2005)

    Google Scholar 

  65. S. Walter, The non-Euclidean style of Minkowskian relativity, in The Symbolic Universe: Geometry and Physics 1890–1930, ed. by J.J. Gray (Oxford University Press, New York, 1999) pp. 91–127

    Google Scholar 

  66. S. Walter, Book review: beyond the Einstein addition law and its gyroscopic Thomas precession: the theory of gyrogroups and gyrovector spaces, by Abraham A. Ungar. Found. Phys. 32(2), 327–330 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abraham Albert Ungar .

Editor information

Editors and Affiliations

Additional information

Dedicated to the 80th Anniversary of Professor Stephen Smale

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ungar, A.A. (2012). Gyrations: The Missing Link Between Classical Mechanics with Its Underlying Euclidean Geometry and Relativistic Mechanics with Its Underlying Hyperbolic Geometry. In: Pardalos, P., Rassias, T. (eds) Essays in Mathematics and its Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28821-0_18

Download citation

Publish with us

Policies and ethics