Skip to main content

Abstract

Flocking algorithms allow high level organization in huge groups of agents. We deal with a multitarget variation of flocking. In this variation, each agent chooses a target to follow, and several flocks are formed then. One important disadvantage of the previously proposed multitarget flocking models is that they assume that agents move in an environment without restrictions. That is, there are no objects that constrain the mobility of agents, such as obstacles. This drawback limits potential applications of multitarget flocking models such as multirobot systems and unmanned aerial vehicles. In this work, we proposed a stable multitarget algorithm based on Particle Swarm Optimization to solve the problem mentioned above. System behavior was rigorously measured to conclude that our proposal models multitarget flocking in constrained environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Luo, X., Li, S., Guan, X.: Flocking algorithm with multi-target tracking for multi-agent systems. Pattern Recognition Letters 31(9), 800–805 (2010)

    Article  Google Scholar 

  2. Reynolds, C.: Flocks, herds and schools: A distributed behaviour model. Computer Graphics 21, 25–34 (1987)

    Article  Google Scholar 

  3. Reynolds, C.: Steering behaviors for autonomous characters. In: Proceedings of Game Developers Conference, San Francisco California, pp. 763–782 (1999)

    Google Scholar 

  4. Kim, D., Wang, H., Shin, S.: Decentralized control of autonomous swarm systems using artificial potential functions: analytical design guidelines. Journal of Intelligent and Robotic Systems 45(4), 369–394 (2006)

    Article  Google Scholar 

  5. Olfati-Saber, R.: Flocking for multi-agent dynamic systems: Algorithms and theory. IEEE Transactions on Automatic Control 51(3), 401–420 (2006)

    Article  MathSciNet  Google Scholar 

  6. Su, H., Wang, X., Yang, W.: Flocking in multi-agent systems with multiple virtual leaders. Asian Journal of Control 10(2), 238–245 (2008)

    Article  MathSciNet  Google Scholar 

  7. Yang, J.C., Lu, Q.S., Lang, X.F.: Flocking shape analysis of multi-agent systems. SCIENCE CHINA Technological Sciences 53(3), 741–747 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, Y.-P., Lin, Y.-Y.: Controlling the movement of crowds in computer graphics by using the mechanism of particle swarm optimization. Applied Soft Computing 9(3), 1170–1176 (2009)

    Article  Google Scholar 

  9. Kim, D.: Self-organization of unicycle swarm robots based on modified particle swarm framework. International Journal of Control, Automation, and Systems 8(3), 622–629 (2010)

    Article  Google Scholar 

  10. Kim, D., Shin, S.: Self-organization of decentralized swarm agent based on modified particled swarm algorithm. Journal of Intelligent and Robotic Systems 46, 129–149 (2006)

    Article  Google Scholar 

  11. Serrato Barrera, A., Lopez-Lopez, A., Rodriguez Gomez, G.: Self-organization of agents for collective movement based on particle swarm optimization: A qualitative analysis. In: Electronics, Communications and Computers (CONIELECOMP), pp. 71–76. IEEE (2011)

    Google Scholar 

  12. Engelbrecht, A.: Fundamentals of computational swarm intelligence, pp. 125–173. Wiley, London (2005)

    Google Scholar 

  13. Rodríguez-Gómez, G., González-Casanova, P., Martínez-Carballido, J.: Computing general companion matrices and stability regions of multirate methods. International Journal for Numerical Methods in Engineering 61, 255–274 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Huth, A., Wissel, C.: The simulation of the movement of fish schools. Journal of theoretical biology 156(3), 365–385 (1992)

    Article  Google Scholar 

  15. Zheng, M., Kashimori, Y., Hoshino, O., Fujita, K., Kambara, T.: Behavior pattern (innate action) of individuals in fish schools generating efficient collective evasion from predation. Journal of theoretical biology 235(2), 153–167 (2005)

    Article  MathSciNet  Google Scholar 

  16. Zapotecatl, J.L.: Modelo basado en información local para la simulación de un cardumen de peces en 3d. Master’s thesis, Coord. Cs Computacionales, Instituto Nacional de Astrofísica Óptica y Electrónica, México (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armando Serrato Barrera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Barrera, A.S., López-López, A., Gómez, G.R. (2012). Multitarget Flocking for Constrained Environments. In: Demazeau, Y., Müller, J., Rodríguez, J., Pérez, J. (eds) Advances on Practical Applications of Agents and Multi-Agent Systems. Advances in Intelligent and Soft Computing, vol 155. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28786-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28786-2_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28785-5

  • Online ISBN: 978-3-642-28786-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics