Skip to main content

Thermal Comfort Support Application for Smart Home Control

  • Conference paper
Book cover Ambient Intelligence - Software and Applications

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 153))

Abstract

The main goal of smart home applications can be summarized as improving (or keeping) users’ comfort maximizing energy savings. Holistic management and awareness about users’ habits play fundamental roles in this achievement, as they add predictive, adaptive and conflict resolution capabilities to the home automation system. The present paper presents an application for the thermal comfort that utilizes information from habit profiles - occupancy, comfort temperature and comfort relative humidity - and is designed to be integrated within overall smart home approaches. The application pursues to keep outdoor air quality and thermal comfort controlling shading devices and ventilation elements in unoccupied times and exploiting unobtrusively persuasive technologies in occupied periods. This context aware pre-control phase paves the way to minimize heating and cooling costs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ASHRAE. Chapters 27 to 29, ASHRAE Handbook – Fundamentals (1997)

    Google Scholar 

  2. ASHRAE. Ventilation for Acceptable Indoor Air Quality. Standard 62-2001 (2001)

    Google Scholar 

  3. ASHRAE. Thermal Environmental Conditions for Human Occupancy. Standard 55-2004 (2004)

    Google Scholar 

  4. Barbato, A., Borsani, L., Capone, A., Melzi, S.: Home energy saving through a user profiling system based on wireless sensors. In: Proceedings of the First ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Buildings, Berkeley, California, pp. 49–54 (2009)

    Google Scholar 

  5. Bernard, Fisher: Fuzzy environmental decision-making: applications to air pollution. Atmospheric Environment 37(14), 1865–1877 (2003)

    Article  Google Scholar 

  6. Borggaard, J., Burns, J.A., Surana, A., Zietsman, L.: Control, estimation and optimization of energy efficient buildings. In: American Control Conference, ACC 2009, pp. 837–841 (June 2009)

    Google Scholar 

  7. European Commission. Energy Efficiency Plan 2011 – COM(2011), 109 final (2011)

    Google Scholar 

  8. Crosbie, T., Dawood, N., Dean, J.: Energy profiling in the life-cycle assessment of buildings. Management of Environmental Quality: An International Journal 21(1), 20–31 (2010)

    Article  Google Scholar 

  9. Galasiu, A.D., Reinhart, C.F., Swinton, M.C., Manning, M.M.: Assessment of energy performance of window shading systems at the canadian centre for housing technology. Technical report (2005)

    Google Scholar 

  10. Harper, R.: Inside the Smart Home. Springer, London (2003)

    Book  Google Scholar 

  11. Hoes, P., Hensen, J.L.M., Loomans, M.G.L.C., de Vries, B., Bourgeois, D.: User behavior in whole building simulation. Energy and Buildings 41(3), 295–302 (2009)

    Article  Google Scholar 

  12. Humphreys, M.A., Nicol, J.F.: The validity of iso-pmv for predicting comfort votes in every-day thermal environments. Energy and Buildings 34(6), 667–684 (2002)

    Article  Google Scholar 

  13. Iglesias, F., Kastner, W.: Usage profiles for sustainable buildings. In: 2010 IEEE Conference on Emerging Technologies and Factory Automation (ETFA), pp. 1–8 (2010)

    Google Scholar 

  14. Iglesias, F., Kastner, W.: Clustering methods for occupancy prediction in smart home control. In: 2011 IEEE International Symposium on Industrial Electronics (ISIE), pp. 1321–1328 (June 2011)

    Google Scholar 

  15. Iglesias, F., Kastner, W., Cantos, S., Reinisch, C.: Electricity load management in smart home control. In: 12th International IBPSA Conference, Building Simulation 2011, pp. 957–964 (2011)

    Google Scholar 

  16. Intille, S.S.: Designing a home of the future. IEEE Pervasive Computing 1(2), 76–82 (2002)

    Article  Google Scholar 

  17. Kofler, M.J., Kastner, W.: A knowledge base for energy-efficient smart homes. In: 2010 IEEE International Energy Conference and Exhibition (EnergyCon), pp. 85–90 (December 2010)

    Google Scholar 

  18. Kotey, N.A., Wright, J.L., Collins, M.R., Barnaby, C.S.: Solar gain through windows with shading devices: Simulation versus measurement. ASHRAE Transactions 115(2) (2009)

    Google Scholar 

  19. Liang, J., Du, R.: Thermal comfort control based on neural network for hvac application. In: Proceedings of 2005 IEEE Conference on Control Applications, CCA 2005, pp. 819–824 (August 2005)

    Google Scholar 

  20. Santamouris, M.: Solar thermal technologies for buildings: the state of the art. James & James (Science Publishers), London (2003)

    Google Scholar 

  21. Mahdavi, A., Pröglhöf, C.: User behaviour and energy performance in buildings. In: IEWT 2009, Int. Energy Economics Workshop TUV, pp. 1–13 (2009)

    Google Scholar 

  22. Moon, J.W., Han, S.-H.: Thermostat strategies impact on energy consumption in residential buildings. Energy and Buildings 43(2-3), 338–346 (2011)

    Article  Google Scholar 

  23. Fanger, P.O.: Thermal comfort. Danish Technical Press, Copenhagen (1970)

    Google Scholar 

  24. Reinisch, C., Kofler, M.J., Iglesias, F., Kastner, W.: Thinkhome: Energy efficiency in future smart homes. EURASIP Journal on Embedded Systems 2011, 18 pages (2011)

    Article  Google Scholar 

  25. Scientific Committee on Health and Environmental Risks, SCHER. Opinion on risk assessment on indoor air quality. European Commission, Health & Consumer Protection Directorate-General, Brussels (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Félix Iglesias Vázquez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vázquez, F.I., Kastner, W. (2012). Thermal Comfort Support Application for Smart Home Control. In: Novais, P., Hallenborg, K., Tapia, D., Rodríguez, J. (eds) Ambient Intelligence - Software and Applications. Advances in Intelligent and Soft Computing, vol 153. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28783-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28783-1_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28782-4

  • Online ISBN: 978-3-642-28783-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics